Involvement of a p53-independent and post-transcriptional up-regulation for p21WAF/CIP1 following destabilization of the actin cytoskeleton

YI-JANG LEE1, CHENG-HAN TSAI1, JENG-JONG HWANG1, SHU-JUN CHIU2, TZONG-JEN SHEU3 and PETER C. KENG4

1Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112; 2Molecular Oncology Laboratory, Institute of Life Science, College of Life Sciences, Tzu Chi University, Taiwan, R.O.C.; 3Department of Orthopedics, Center for Musculoskeletal Research and 4Cancer Center, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA

Received September 1, 2008; Accepted November 15, 2008

DOI: 10.3892/ijo_00000184

Abstract. The tumor suppressor p21WAF/CIP1 mediates the proliferation arrest via p53-dependent or -independent gene transactivation following distinct environmental stresses. In this study, we show that direct destabilization of the actin cytoskeleton by actin-targeting reagents leads to a p53-independent up-regulation of p21WAF/CIP1. The actin-targeting agent cytochalasin B (10 μM) quickly disrupted the actin cytoskeleton of p53 wild-type and p53-null cells accompanied by up-regulation of p21WAF/CIP1. Nevertheless, both total p53 and ser-15 phosphorylated p53 were not accumulated concomitantly, compared to the effect caused by ionizing irradiation. P53-independent up-regulation of p21WAF/CIP1 was also observed by two other actin-targeting agents cytochalasin D and latrunculin B, but not by the microtubule inhibitor colcemid. Furthermore, we showed that p21WAF/CIP1 mRNA level was not increased, whereas the protein degradation was delayed. A reduction of ubiquitination for p21WAF/CIP1 protein was detected using immunoprecipitation/immunoblot analysis. Up-regulation of p21WAF/CIP1 was not associated with cytotoxicity induced by cytochalasin B that influenced DNA integrity and plating efficiency only after 24 h of treatment. In addition, up-regulated p21WAF/CIP1 was accompanied by reduction of phosphorylation on retinoblastoma (Rb) protein in p53-null cells, implying that p21WAF/CIP1 might in part account for the molecular regulation of cytochalasin B induced G1 phase arrest. Together, current results suggest that p21WAF/CIP1 level can be mediated by actin organization in the absence of p53 via a post-transcriptional machinery, and it may contribute to the growth ablation by agents targeting the actin cytoskeleton.

Introduction

P21WAF/CIP1 is one of the cell cycle regulators that can bind to cyclin/cyclin-dependent kinase complexes and inhibit their activities in response to DNA damage, anti-mitogenic or differentiating signals. These effects can be mediated through p53-dependent or -independent machinery according to the types of stimuli (1-6). There are two p53-binding elements locating at the p21WAF/CIP1 gene promoter that can be transactivated by the nuclear accumulated p53 after DNA damage (7). On the other hand, the underlying mechanisms for p53-independent induction of p21WAF/CIP1 are diverse. For instance, differentiating reagents such as butyrate, 12-O-tetradecanoylphorbol-13-acetate (TPA), and trans-retinoic acid can elevate p21WAF/CIP1 mRNA expression in various human cell lines that harbor no or mutant p53 (8-10). Besides, the mitogenic growth factors, serum, carbon tetrachloride or oxidative stress can stimulate p21WAF/CIP1 gene expression in the absence of functional p53 (3-6,8). The signal transduction via Ras/Raf/MEK/ERK pathway or activation of protein kinase C may be involved in transactivation of p21WAF/CIP1 gene without p53 activation (11-13).

Post-transcriptional regulation of p21WAF/CIP1 protein is another important mechanism for determining the p21WAF/CIP1 level in cells. P21WAF/CIP1 is a short-lived protein that can be degraded via the ubiquitin-dependent or -independent proteasome pathway (14-17). Suppression of proteolysis may also lead to accumulation of p21WAF/CIP1 in cells. However, which type of environmental stimuli can elevate p21WAF/CIP1 level via post-transcriptional regulation is poorly understood. In addition, no evidence currently shows that p53 is associated with post-transcriptional regulation of p21WAF/CIP1.

Correspondence to: Dr Yi-Jang Lee, Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming University, No. 155, Sec. 2, Linong St. Beitou District, Taipei 112, Taiwan, R.O.C.
E-mail: yjlee2@ym.edu.tw

Key words: p21WAF/CIP1, p53-independent pathway, actin cytoskeleton, cytochalasin, G1 phase arrest
Although p21WAF/CIP1 gene is rarely mutant in human tumors, inefficient expression of p21WAF/CIP1 has been found in several types of cancers (18-23). In mouse models, p21WAF/CIP1 nullizygosity has been reported to increase the incidence of tumorigenesis and metastasis, suggesting that a normal p21WAF/CIP1 expression is important for preventing malignancy (24,25). It has been reported that Ras oncoprotein induced p21WAF/CIP1 gene expression is suppressed by Rho GTPase protein via transcriptional and post-transcriptional pathways, and inhibition of Rho activity can up-regulate p21WAF/CIP1 level thereby promoting cell cycle progression (26,27). Since Rho family GTPase are mainly responsible for actin cytoskeletal assembly in normal and transformed cells (28), the integrity of actin cytoskeleton may be also important for regulation of p21WAF/CIP1 levels for cell growth. Nevertheless, such a hypothesis remains to be addressed.

In this study, we investigated whether p21WAF/CIP1 expression could be affected by direct destabilization of the actin cytoskeleton. For this purpose, we exposed cultured human cancer cells to actin-targeting reagents and showed that p21WAF/CIP1 protein level was up-regulated independent of p53. A delay of protein degradation rate rather than increase of gene transcripts might account for the accumulation of p21WAF/CIP1 protein, by which the protein ubiquitination was reduced. Furthermore, up-regulated p21WAF/CIP1 in p53-null cells was also in part associated with G1 phase arrest caused by destabilization of actin cytoskeleton. It implies that targeting on the actin cytoskeleton may be important for the development of new therapeutic strategies when treating tumors with mutant or deleted p53 genes.

Materials and methods

Cell culture. Human non-small lung adenocarcinoma A549 cells and H1299 cells, and human osteosarcoma MG63 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamate, 50 U/ml penicillin and 50 μg/ml streptomycin (Invitrogen Inc., Carlsbad, CA). The stable H1299/p53 cells that can constitutively over-express wild-type p53 was maintained in DMEM containing 10% FBS and 300 μg/ml gentamycin (Invitrogen Inc., Carlsbad, CA). The crude protein lysates were collected by centrifugation and the protein concentration was determined containing 20 μg/ml phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich). The crude protein lysates were collected by centrifugation and the protein concentration was determined by Bradford assay (Bio-Rad, Hercules, CA). Crude proteins lysates (50-100 μg) were separated on 10% or 15% SDS-polyacrylamide gel by electrophoresis. The fractionated proteins were electro-transferred to nitrocellulose membrane, blocked with TBST buffer (0.8% NaCl, w/v; 0.02% KCl, w/v; 25 mM Tris-HCl and 0.1% Tween-20, v/v) plus 4% skim-milk for 1 h and then incubated with primary antibody at 4˚C overnight. The membrane was washed with TBST buffer and re-incubated with horseradish phosphatase (HRP)-conjugated secondary antibody. Protein signals were detected using ECL™ detection reagents (Amersham Bioscience, Buckinghamshire, UK). The primary antibodies used in this study included anti-p21WAF/CIP1 (BD Pharmingen, San Diego, CA), anti-p53 (Calbiochem, San Diego, CA), anti-phospho-p53 (ser15-specific) (Cell Signaling Technology, Beverly, MA) and anti-β-actin (Sigma-Aldrich). The intensity of protein bands was measured by densitometrically using NIH Image for Windows (Beta version 4.02, Scion Corporation, Frederick, MD).

Radiation source. The γ-rays were delivered by a Cesium-137 source at a dose rate of 385 cGy/min. Cells were exposed to a single dose of 6 Gy.

Determination of p21WAF/CIP1 mRNA expression. Total RNA was prepared according to the manufacturer’s manual of TRIzol reagent (Invitrogen). Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) was followed by the C. therm. Polymerase One-Step RT-PCR system (Roche Inc., Mannheim, Germany) to determine the level of p21WAF/CIP1 mRNA. The sequences of primer set included forward primer: 5’-ATGTCAGAACCGGCTGGGGA-3’, and reverse primer: 5’-CTAGGGCTTCCTCTTGGAGA-3’. For quantitative real-time PCR (qPCR), 5 μg of total RNA was used for obtaining the first strand cDNA by SuperScript II™ reverse transcriptase (Invitrogen). Subsequently, the cDNA products were mixed with SYBR® green PCR Master Mix and the primer mixture for reaction using 7000 Sequence Detection System (Applied Biosystems, Warrington, UK). Primers used for qPCR were 5’-GGACCTGGAGACTCTCA GGG-3’ and 5’-CAGGGGACAGCAGAGGAAGAC-3’. Amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA was carried out simultaneously and used as the internal control. The data were collected and normalized by the internal control. The data were collected and normalized by the internal control.
to determine the level change of p21WAF/CIP1 mRNA. Each data point is representative of the duplicate experiments.

Plasmids and reporter gene assay. The WWP-Luc reporter plasmid contains a 2.4-kb including the human wild-type p21WAF/CIP1 gene promoter, which is fused with a firefly luciferase reporter gene (7). For reporter gene assay, cells were transiently transfected with the plasmids using Superfectin® (Qiagen, Inc., Valencia, CA) according to the manufacturer’s manual. In brief, 2 μg of the reporter plasmid and 10 ng of the pRL-SV40 plasmid (Promega Inc., Madison, WI) were mixed with Superfectin and serum-free DMEM for 10 min. The formed DNA-Superfectin complexes were then mixed with 0.6 ml serum-containing DMEM and poured over a monolayer cell culture that have been seeded and grown overnight. The transfection reaction were carried for 3 h at 37°C and then stopped by replacing the mixture with complete DMEM. After transfection, the cell extracts were harvested with passive lysis buffer and the luciferase activity was analyzed using the dual-luciferase reporter gene assay system (Promega). The pRL-SV40 plasmid that constitutively expressed Renilla luciferase activity was used as internal control. The emitted light intensity was measured using an Optocomp® I luminometer (MGM Instruments, Inc., Hamden, CT).

Detection of ubiquitination on p21WAF/CIP1. P21WAF/CIP1 ubiquitination was determined as the procedure reported previously (30). In brief, the monolayer was lysed in NP-40 lysis buffer containing 2% protease inhibitor cocktail set III (Calbiochem). Cell extract (500 μg) was incubated with anti-p21WAF/CIP1 antibodies (Santa-Cruz Inc., Santa-Cruz CA) for 2 h at 4°C with gentle shaking and then mixed with Protein-A/G agarose (Santa-Cruz CA) overnight. The formed immune complexes were then washed using NP-40 lysis buffer four times and the pellets were collected by centrifugation. The washed immune complexes were added to 2X sample buffer and separated on SDS-PAGE. Western blot analysis was subsequently adopted to detect the level of p21-conjugated ubiquitins using anti-ubiquitin antibody (P4D1) (Cell Signaling Technology, Beverly, MA).

Measurement of plating efficiency. Exponentially growing monolayer cell cultures were treated with 10 μM cytochalasin B at the time-points described in the results. The cells were then trypsinized and seeded in 60-mm dishes (25, 50 and 100 cells per dish) for colony formation assays. After incubation for 14 days, the colonies (>50 cells) on the dishes were visualized by staining with 1x crystal violet (1.25 g in 1175% ethanol, w/v; Sigma-Aldrich). The plating efficiency was determined as the ratio of the number of formed colonies divided by the number of seeded cells multiples 100.

DNA degradation assay. Cells were treated with cytochalasin B for 0, 6 and 12 h and then harvested by trypsinization. Collected cells were lysed with lysis buffer (0.5% Sarkosyl; 50 mM Tris-HCl/pH 8.0; 10 mM EDTA, 1 mg/ml proteasein K) at 37°C for 24 h. The cell lysates were then treated with 500 μg/ml RNase A and kept at room temperature for additional hour. After extraction with phenol/chloroform, the samples were mixed with running buffer and loaded onto a 1.5% agarose gel for separation by electrophoresis. The DNA was stained with 10 μg/ml ethidium bromide and visualized by UV illumination.

Flow cytometric analysis of cell cycle. The cells after various treatments were trypsinized and fixed in 75% ethanol (1x10⁶ cells/ml) at 4°C overnight. The fixed cells were centrifuged and the pellet was treated with 1 ml RNase A (1 mg/ml) at room temperature for 30 min. Cells were then spun down, treated with 1 ml of propidium iodide (Sigma-Aldrich) and transferred to 5 ml polypropylene round-bottom tubes (Becton-Dickinson Labware, Franklin Lakes, NJ) through a 37 μM mesh. The DNA histogram was created using a flow cytometer (EPICS Elite ESP, Coulter Electronics) and the cell cycle distribution was determined using MCYCYLE software (version 3.01, Phoenix Flow System, San Diego, CA).

Statistical analysis. Independent experiments were conducted for comparison of the statistical difference between the control groups and experimental groups. Statistical differences were determined by the Student’s t-test. The significantly different results were defined by p<0.05.

Results

Destabilization of the actin cytoskeleton by cytochalasin B leads to p21WAF/CIP1 up-regulation prior to p53 activation. P21WAF/CIP1 is a cell cycle regulator that is up-regulated via the p53-dependent or -independent pathway under various environmental stresses. To investigate whether the expression of p21WAF/CIP1 is associated with the p53 state after destabilization of actin cytoskeleton, we exposed the p53 wild-type human A549 epithelial cells to the actin inhibitor cytochalasin B. Destabilization of actin cytoskeleton was visualized as loss of the cortical stress fibers and the pericellular microspikes, while the punctuated actin foci were formed in the presence of 10 μM cytochalasin B for 1 h (Fig. 1A). Such an effect was sustained during the treatment (data not shown). We next examined the expression of p21WAF/CIP1 protein, and the result showed that the p21WAF/CIP1 protein level was significantly up-regulated, whereas the levels of total and ser-15 phosphorylated p53 were not affected up to 4 h of cytochalasin B treatment (Fig. 1B). In contrast, exposure of A549 cells to γ-rays led to concomitantly up-regulation of p21WAF/CIP1 and p53, indicated that the p53-p21WAF/CIP1 regulatory pathway remained functional (Fig. 1B). These results suggest that destabilization of actin cytoskeleton can up-regulate p21WAF/CIP1 without activation of p53.

Destabilization of actin cytoskeleton can up-regulate p21WAF/CIP1 in p53-null cell lines. To further demonstrate that destabilization of actin cytoskeleton can induce p21WAF/CIP1 expression through a p53-independent pathway, we exposed p53-null cell lines human H1299 non-small lung carcinoma cells to cytochalasin B. H1299 cells expressing exogenous wild-type p53 cDNA (H1299/p53) was used as a positive control to demonstrate that p21WAF/CIP1 can be induced by p53
over-expression in this cell line. Compared to the untreated controls, significant up-regulation of p21WAF/CIP1 was detected after 4 h of cytochalasin B, and the levels were sustained thereafter (Fig. 2A). No p53 expression was detectable in H1299 cells, and p21WAF/CIP1 gene transcription could not be induced by γ-ray exposure. Moreover, the same result was obtained by exposing other p53-null MG63 human osteosarcoma cells to cytochalasin B (Fig. 2B).

To test if other actin inhibitors can also up-regulate p21WAF/CIP1 via a p53-independent pathway, we exposed H1299 cells to cytochalasin D and latrunculin B. The former can bind to the fast growing ends of actin microfilaments as cytochalasin B, and the latter is able to sequester monomeric actins to block the actin polymerization. The results showed that both cytochalasin D and latrunculin B were able to up-regulate p21WAF/CIP1 of H1299 cells after 4 h of treatment (Fig. 2C). To test if microtubule, another dynamic cytoskeleton, can affect p21WAF/CIP1 expression, we used the microtubule inhibitor colcemid to treat H1299 cells. The result showed that p21WAF/CIP1 level was not significantly influenced by colcemid (Fig. 2D). These results suggest that the actin cytoskeleton is important for regulation of p21WAF/CIP1 expression regardless of p53 status.

p21WAF/CIP1 transcripts was not up-regulated after destabilization of actin cytoskeleton. P53 is known to transactivate p21WAF/CIP1 gene after DNA damage. Since destabilization of actin cytoskeleton mediated up-regulation of p21WAF/CIP1 was not dependent on p53 state, we asked whether gene transcription was still associated with such a phenomenon. For this purpose, we detected the p21WAF/CIP1 mRNA levels in

$$584 \text{ LEE et al: DESTABILIZATION OF THE ACTIN CYTOSKELETON}$$

Figure 1. Destabilization of actin cytoskeleton induced p21WAF/CIP1 up-regulation without accumulation of p53. (A) Actin staining demonstrated that actin cytoskeleton was disrupted in A549 cells using actin inhibitor cytochalasin B for 1-h treatment. Bar, 40 μm; (B) Both cytochalasin B and ionizing radiation could up-regulate p21WAF/CIP1, whereas p53 states were not affected by the former treatment compared to the latter one. The source of ionizing radiation is described in Materials and methods. The results are a representative of duplicate experiments.

$$581-589 \text{ 31/12/2008 02:40 Ï™ÂÎ·584}$$

Figure 2. Up-regulation of p21WAF/CIP1 in p53-null cells after destabilization of actin cytoskeleton. (A) H1299 cells were exposed to 10 μM cytochalasin B for the time-points as indicated and p21WAF/CIP1 levels were then determined by Western blot analysis. P53-dependent up-regulation of p21WAF/CIP1 in H1299 cells was demonstrated by cells transfected with wild-type p53 (H1299p53, see Materials and methods). Without p53, p21WAF/CIP1 could not be induced after H1299 cells were exposed to γ-rays (6 Gy); (B) Up-regulation of p21WAF/CIP1 was also detected in p53-null MG63 cells exposed to 10 μM cytochalasin B; (C) Up-regulation of p21WAF/CIP1 was detected after H1299 cells were exposed to other actin targeting agents cytochalasin D (CD, 2 μM) and latrunculin B (Lat B, 1 μM); (D) p21WAF/CIP1 was not up-regulated by colcemid (Col, 1 μg/ml) treatment. The lysate sample from H1299 cells treated with 4 h of cytochalasin B was used as a positive control of p21WAF/CIP1. Each blotting result was the representative of duplicate experiments.
H1299 cells. Firstly, semi-quantitative RT-PCR showed that p21WAF/CIP1 transcripts in cytochalasin B-treated cells were not increased compared to the untreated control (Fig. 3A). Similar result was obtained using the quantitative real-time PCR (Fig. 3B). The promoter activity using the WWP-Luc reporter plasmid containing 2.4 kb p21 WAF/CIP1 gene promoter containing p53 binding elements was not either significantly stimulated by cytochalasin B up to 24 h (Fig. 3C). Thus, it suggests that up-regulation of p21 WAF/CIP1 is not dependent on the increase of mRNA level after destabilization of actin cytoskeleton.

Enhancement of the p21 WAF/CIP1 protein stability after destabilization of actin cytoskeleton. In order to resolve the transcript-independent up-regulation of p21 WAF/CIP1, we used cycloheximide (CHX) blocking new protein synthesis to examine the degradation rate of p21 WAF/CIP1 protein after destabilization of actin cytoskeleton. H1299 cells were exposed to 10 μM cytochalasin B for 2 or 4 h, and then washed and replaced with CHX (10 μg/ml) for additional 0.5-2 h. Compared to cells treated with CHX only, delay of p21 WAF/CIP1 protein degradation was detected in cytochalasin B-treated cells (Fig. 4A). Densitometric measurement showed that the half-life of p21 WAF/CIP1 protein was about 30 min, and that this was extended to more than 2 h in cytochalasin B-treated cells (Fig. 4B). To determine if the change of protein stability is associated with the ubiquitination, we used the immunoprecipitation assay to pull down endogenous p21 WAF/CIP1 using anti-p21 WAF/CIP1 antibody and then detected the states of bound ubiquitins by Western blot analysis. The result showed that the p21 WAF/CIP1 ubiquitination was decreased after 4 h of cytochalasin B treatment, suggested that the delay of p21 WAF/CIP1 degradation was associated with reduction of protein ubiquitination (Fig. 4C).

Up-regulation of p21 WAF/CIP1 is not accompanied by cytochalasin B mediated reduction of cell viability. To determine if p21 WAF/CIP1 is associated with the cell stress responding to destabilization of actin cytoskeleton, we exposed A549 and H1299 cells to cytochalasin B up to 24 h to detect the states of cell viability. Significant reduction of plating efficiencies that represented impair of cell proliferative ability was detected only after 24 h of treatment (Fig. 5A). Neither cell line exhibited apparent DNA degradation until 24 h of treatment (Fig. 5B). These results suggest that up-regulation of p21 WAF/CIP1 is not associated with the cytotoxicity caused by cytochalasin B.

Up-regulation of p21 WAF/CIP1 is associated with G1 phase arrest induced by destabilization of actin cytoskeleton. P21 WAF/CIP1 is one of the cell cycle regulators controlling the G1-S phase progression, in which the retinoblastoma protein (Rb) phosphorylation is essential for such a process. Besides, actin cytoskeleton is important for normal G1 phase progression and cell proliferation. Here we found that in H1299 cells, up-regulation of p21 WAF/CIP1 was accompanied by dephosphorylation of Rb after cytochalasin B treatment (Fig. 6A). Also, the G1 phase arrest was determined using colcemid to block the recycle of M phase cells. It showed that cytochalasin B apparently delay the progression of G1 phase to S phase compared to colcemid alone (Fig. 6B). The quantification of G1 phase percentage in different time-points of treatment is summarized in Table I. These results suggested that destabilization of actin cytoskeleton mediated p53-independent up-regulation of p21 WAF/CIP1 may be associated with G1 phase arrest, at least in part.

Discussion

Although p21 WAF/CIP1 is rarely mutated in cancer formation, accumulated data have demonstrated that inefficient expression of p21 WAF/CIP1 contributes to the neoplastic progression (19,21,25,32). Transcription of p21 WAF/CIP1 gene via wild-type p53 activation following DNA damage is a well-known...
mechanism that is important for chemotherapy and radiotherapy. However, the evidence that p21WAF/CIP1 can be up-regulated in p53-independent manner provides important alternative approaches for controlling cancers that 50% of them lack functional p53 (3-6).

Actin cytoskeleton accounts for most abundant composition in cells. Destabilization of actin structures leads to impairing normal cell functions that may be accompanied by molecular responses. In this study, we find that the actin inhibitor induced destabilization of actin cytoskeleton can up-regulate p21WAF/CIP1 in cultured cells. Rapid accumulation of p21 WAF/CIP1 proteins were detected in both A549 (p53 +/+) and H1299 (p53 -/-) cell lines exposed to cytochalasin, suggested that a p53-independent mechanism was involved. Additional evidence includes up-regulation of p21 WAF/CIP1 is not accompanied by the accumulation of total and ser-15 phosphorylated p53 in A549

Figure 4. Delay of p21 WAF/CIP1 protein degradation following destabilization of actin cytoskeleton. (A) P21 WAF/CIP1 protein stability was determined using cycloheximide (CHX, 10 μg/ml) that can block new protein synthesis. H1299 cells were exposed to cytochalasin B (CB, 10 μM) for 2 and 4 h, and then replaced with CHX for 0.5, 1 and 2 h. Cells treated with CHX only (-CB) was used as a control. Western blot analysis was performed for detection of p21 WAF/CIP1 protein; (B) Quantification of protein degradation rate by densitometric analysis of the protein bands on the blot. The value of β-actin was used to normalize that of p21 WAF/CIP1. The values were the average of duplicate experiments; (C) P21 WAF/CIP1 protein ubiquitination was determined using immunoprecipitation/immunoblotting analysis. Anti-ubiquitin antibody was used to detect the conjugated ubiquitins on the endogenous p21 WAF/CIP1 protein pulled down by anti-p21 WAF/CIP1 antibody (see Materials and methods).

Figure 5. The effects of cytochalasin B on cell viability. (A) A549 cells and H1299 cells were exposed to cytochalasin B (10 μM) for 0, 6, 12 and 24 h. The plating efficiency was then measured in each cell line after drug treatment. (B) The extents of DNA degradation in cells after cytochalasin B treatment. Values are means of three independent experiments ± SD. *p<0.05 for comparison between cells with or without drug treatment (24 h).
cells. Also, no p53 activity was detectable in A549 cells using the 2.4kb p21WAF1/CIP1 promoter containing p53 binding elements for reporter gene assay (data not shown). Though the p21WAF1/CIP1 up-regulation of A549 cells was slightly earlier than that of H1299 cells under the same dose of cytochalasin B (1 vs. 2 h), the maximum levels of p21WAF1/CIP1 up-regulation remained similar in both cell lines after 4 h of treatment. It is speculated that the little kinetic difference is due to cell-type specific effect.

One of the most important questions is whether cytochalasin B can trigger other effects to up-regulate p21WAF1/CIP1 rather than actin destabilization. Cytochalasin B is also a specific inhibitor of GLUT transporters that can limit the uptake of glucose in cells (33,34). Using the drugs cytochalasin D and latrunculin B that do not inhibit basal glucose transport, they were still able to up-regulate p21WAF1/CIP1 in p53-null H1299 cells. A parallel experiment using colcemid showed no effect on up-regulation of p21WAF1/CIP1. These results further confirm that actin-targeting agents can specifically up-regulate p21WAF1/CIP1 without p53 activation.

The expression of p21WAF1/CIP1 level in the absence of p53 is either dependent on gene transcription or post-translational machinery. P53-independent transcription of p21WAF1/CIP1 can be mediated by mitogenic stimulation, transformation growth factor-\beta, oxidative stress or differentiating signals (2-4,6). Our data reveal that no essential increase of p21WAF1/CIP1 mRNA after cells are treated with cytochalasin B, suggesting that the signaling pathways for p21WAF1/CIP1 gene transactivation is not involved. Indeed, under the same experimental condition, we did not find increase of phosphorylation on p44/p42 mitogenic activated protein kinase (MAPK) in cells treated with cytochalasin B (data not shown). On the other hand, the p21WAF1/CIP1 protein stability was enhanced after destabilization of actin cytoskeleton. Cytochalasin B induced relatively lower amount and approximately maximum amount of p21WAF1/CIP1 in H1299 cells after 2 and 4 h of treatment, respectively (Fig. 2). The degradation rate of p21WAF1/CIP1 protein was examined at these two time-points following cycloheximide treatment, and similar results were obtained. That is, compared to the untreated controls, apparent delay of endogenous p21WAF1/CIP1 protein degradation in cytochalasin B treated cells was detected. Such an observation is consistent with previous report that inhibition of Rho GTPase activity leads to disruption of actin cytoskeleton and p21WAF1/CIP1 stabilization (26). On the other hand, we cannot exclude an indirect effect using cycloheximide to explore p21WAF1/CIP1 degradation rate since it may block proteins that affect its turnover rate. A pulse-chase analysis will be helpful to confirm this observation.

Table I. The G1 percentage of H1299 cells measured by flow cytometry.

<table>
<thead>
<tr>
<th></th>
<th>Colcemid (10 (\mu)g/ml)</th>
<th>Cytochalasin Ba + colcemid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 6 h 12 h</td>
<td>6 h 12 h</td>
</tr>
<tr>
<td>H1299b</td>
<td>56.3% 19.8% 3.5%</td>
<td>38.2% 25.4%</td>
</tr>
</tbody>
</table>

\(\text{a}\)Concentration, 10 \(\mu\)M. \(\text{b}\)The values were an average of two independent experiments.

The ubiquitination-independent pathway is demonstrated by finding that mutant p21WAF1/CIP1 lacking lysine residues...
(p21K6R) for ubiquitination is degraded normally (16). Furthermore, Touitou et al demonstrated that the C-terminal of p21WAF1/CIP1 protein directly binds to the C8 α-subunit of 20S proteasome for degradation without ubiquitination (17). Our current data can not exclude the existence of the ubiquitination-independent pathway. Especially, actin organization is associated with cell attachment to extracellular matrix (ECM) for entry of cell cycle and growth (37). ECM has been reported to induce degradation of mutant p21WAF1/CIP1 (p21K6R), suggesting that ubiquitin-proteasome degradation of p21WAF1/CIP1 is not necessary during cell anchorage and spreading (38). It will be possible to identify whether destabilization of actin cytoskeleton can up-regulate p21WAF1/CIP1 via suppression of ubiquitination-independent machinery using p21K6R chimera.

The other question is the association between the up-regulated p21WAF1/CIP1 and cell viability after cytochalasin B treatment. A previous report shows that disruption of actin microfilaments by cytochalasin D induces apoptosis in a p53-dependent manner (39). In contrast to their results, our data revealed that both A549 (p53-/-) cells and H1299 (p53-/-) cells exposed to cytochalasin B exhibit significant reduction of cell viability after 24 h of treatment. These differences are possibly due to cell-type specific responses. Given that the timing of p21WAF1/CIP1 up-regulation is distinct from that of the loss of cell viability by cytochalasin B, it is speculated that p21WAF1/CIP1 is not associated with cytochalasin B induced cytotoxicity. Nevertheless, further evidence is required. For instance, a gene knockdown approach using RNA interference may at least in part clarify the role of p21WAF1/CIP1 responding to pharmaceutically-mediated destabilization of actin cytoskeleton.

Destabilization of the actin cytoskeleton has been reported to inhibit early G1 phase progression (40,41). It has been reported that inhibition of actin organization in mammalian fibroblasts leads to G1 phase arrest depending on retinoblastoma (Rb) pocket proteins but not p53 (42). Besides, the p21WAF1/CIP1 level was not elevated, whereas p27KIP1 protein was up-regulated in their study. Although we found that the hypophosphorylated Rb was increased accompanied by up-regulated p21WAF1/CIP1 in H1299 cells exposed to cytochalasin B, we did not detect apparent elevation of p27KIP1 under the same condition (data not shown). These controversial results suggest that the molecular regulations following destabilization of actin cytoskeleton for G1 phase arrest are cell-type specific. However, it remains to address whether p21WAF1/CIP1 or p27KIP1 can directly influence cyclin-dependent kinase (CDK) activity and result in hypophosphorylation of Rb for G1 phase arrest after destabilization of actin cytoskeleton.

In conclusion, current results have demonstrated that destabilization of actin cytoskeleton is able to up-regulate p21WAF1/CIP1 via a p53-independent pathway. Up-regulation of p21WAF1/CIP1 is mainly dependent on post-translational mechanism rather than transcriptional pathway. Also, the function of the up-regulated p21WAF1/CIP1 is potentially associated with G1 phase arrest prior to significant cell death. The underlying mechanisms regarding how destabilization of actin cytoskeleton is able to enhance p21WAF1/CIP1 protein stability and influence CDK activity, if any, will require further investigation.

Acknowledgements

This work was supported by National Science Council Grant (NSC 95-2314-B-010-079) and by a grant from Ministry of Education, ‘ Aim for the Top University Plan’. The authors thank Dr Michael A. O’Reilly for providing the WWP-Luc plasmid. We also thank Drs Zhong Yun, Lih-Yun Lin and Wenwei Hu for their important comments and suggestions, and Ms, Tein-Hen Haung and Pei-Xun Jiang for their technical supports. We thank Dr Kirby for the English revision.

References

