Abstract.

Primary liver cancers are classified into three types based on their morphology and cytogenetic characteristics: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular and cholangiocarcinoma (CHC). It is often difficult to distinguish these liver tumors. Glypican-3 (GPC3) is serological and histochemical marker of hepatocellular carcinoma. In order to separate these three types of liver cancers, we analyzed the GPC3 expression in 85 liver resection specimens, including 46 HCCs, 28 ICCs and 11 CHCs. GPC3 immunohistochemical staining was used to distinguish HCC from ICC by comparing with the conventional biomarker, α-fetoprotein (AFP). The immunostaining of GPC3 was identified in 78.3% (36/46) of HCCs, 60% (9/15) of well differentiated, 88.9% (16/18) of moderately differentiated and 84.6% (11/13) of poorly differentiated HCCs. It was negative in the ICCs. We confirmed that GPC3 expression is specific to HCC component (8/11, 72.7%) but few samples also showed weakly in ICC component (2/11, 18.2%) of CHC sections among 11 cases compared with HCC biomarkers including AFP and hepatocyto paraffin 1 (HepPar1), and ICC biomarkers cytokeratin (CK) 7 and CK19. Three cases in which the macroscopic features resembled ICC did not express GPC3 even in the pathological HCC component. Most (10/11, 91%) of the pathological cholangiocarcinoma components in CHC showed positive staining for CK7 and CK19. The results of this study suggest that GPC3 is a biomarker that is sensitive and specific to HCC component of CHC, and CK7 and CK19 are markers for pathological cholangiocarcinoma component of CHC.

Introduction

Liver cancer is one of the common malignancies that are rapidly increasing throughout the world. Primary liver cancers are classified into three types based on their morphology and cytogenetic characteristics: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular and cholangiocarcinoma (CHC). HCC is hepatocyte-origin, and ICC is from the epithelium of the intrahepatic bile duct. CHC is a rare type of liver cancer with features of both hepatocellular and biliary differentiation (1-3). The pathological structure of CHC is composed of hepatocellular element showing bile production, an intercellular bile canaliculi or trabecular growth pattern and cholangiocellular component showing mucin production or gland formation.

Because of their rapid growth rate and the lack of accurate ways of diagnosis in the early stages, the prognosis and the survival rate for liver cancer patients remain poor. Currently, ultrasound sonography (US), computed tomography (CT), magnetic resonance imaging (MRI), and histopathological examination for tumor biopsy are used for diagnosis. However, distinguishing the three different primary liver tumors is often a challenging task in diagnosis, for which immunohistochemical analysis for specific antigens is a helpful tool: α-fetoprotein (AFP) and hepatocyto paraffin 1 (HepPar1) for HCC (4-8) and cytokeratin (CK) 7 and CK19 for ICC (9-11).
Glypican-3 (GPC3) was discovered as a potential serological and histological marker whose expression is specific for HCC (12-16). GPC3 belongs to glypican family that is a group of heparan sulfate proteoglycans linked to the outer surface of cell membrane through a glycosylphosphatidylinositol anchor (17). In mammals, six members of GPCs have been reported, GPC1 to GPC6. GPCs are released from the cell surface by a lipase called Notum to regulate the signaling of Wnts, Hedgehogs, fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs) (18-25). Depending on the cellular context, their function can be stimulatory or inhibitory activity, or signaling. The expression of GPC3 is detected in placenta and fetal liver, but not in other normal organs. During hepatic carcinogenesis, GPC3 have been reported to reappear in HCC and to be released into serum (12,13,15,26). Its expression is also detected in melanoma (27-29). The functions of GPC3 in cancer cells are still unclear.

In this study, we examined whether immunohistochemical analysis for GPC3 can be used to distinguish HCC from ICC, if so, how effectively GPC3 can be detected, compared to other biomarkers that are conventionally used. We demonstrate that distinguishing HCC from ICC, if so, how effectively GPC3 can be detected, from ICC, if so, how effectively GPC3 can be detected, and to be released into serum (12,13,15,26). Its expression is also detected in melanoma (27-29). The functions of GPC3 in cancer cells are still unclear.

Materials and methods

Case selection. We selected 85 cases of liver tumors from the surgical pathology files from 1992 to 2006 of National Cancer Center Hospital East, Kashiwa, Chiba, Japan. The cases included 46 primary HCCs, 28 ICCs, and 11 CHCs that underwent hepatectomy. All identifiers were eliminated to protect patients’ identities. Size of the tumor and any clinicopathologic factors (age, sex and grade of tumor) were matched between HCC and ICC. The 46 cases of HCCs occurred in 33 men and 13 women with a mean of age at 65.3 years (range, 44-80 years). HCC was subclassified into well differentiated HCC (n=15), moderately (n=18), and poorly (n=13) differentiated HCC. In terms of GPC3 expression and tumor classification criteria. The 28 cases of ICC consisted of 18 men and 10 women. Their mean age was 65.7 years (range, 51-82 years). All CHCs were pathologically confirmed after surgery.

Results

GPC3 was present in 80% of HCC and negative in ICC. In order to examine the levels and pattern of GPC3 expression, 46 cases of HCC and 28 cases of ICC were immunohistochemically analyzed. GPC3 was detected in 36 cases (78%) of HCC (Fig. 1a), and no expression of GPC3 was found in any of the ICC patients (Fig. 1b). The GPC3 staining was diffused throughout (Fig. 1c) or localized in a granular pattern in the cytoplasm (Fig. 1d). In other cases, GPC3 was observed at the plasma membrane (Fig. 1e). Previously GPC3 is shown to bind to the cell membrane (16), however, those cases with membranous GPC3 had staining in the cytoplasm as well, but there was no case of GPC3 located only at the plasma membrane. When sensitivity of GPC3 was evaluated, 36 cases (78%) were positive for GPC3 when only 16 cases (35%; P<0.0001) were stained for AFP in HCC suggesting that GPC3 is more sensitive than AFP. Thus, GPC3 was confirmed to be specific and sensitive to HCC compared to AFP.

GPC3 expression increased in moderately and poorly differentiated HCC. In terms of GPC3 expression and tumor...
differentiation level, GPC3 was expressed in 9 (60%) of 15 well differentiated, 16 (89%) of 18 moderately differentiated and in 11 (85%) of 13 poorly differentiated HCC (Table I). AFP was expressed in 3 (20%) of 15 well differentiated, 6 (33%) of 18 moderately differentiated and in 7 (54%) of 13 poorly differentiated HCC (data not shown). The expression level of GPC3 was lower in well differentiated HCC than in the other HCC grades, though the difference was not statistically significant (well- vs. moderately differentiated: \(P=0.054 \), well- vs. poorly differentiated: \(P=0.150 \)). Thus, GPC3 expression is also a good indicator for malignancy levels.

Table I. Correlation of positive for GPC3 staining and tumor grade.

<table>
<thead>
<tr>
<th>Grade of tumor</th>
<th>HCC</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of case</td>
<td>GPC3</td>
</tr>
<tr>
<td>Well-differentiated</td>
<td>15</td>
<td>6 5 4 9 (60%)</td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>18</td>
<td>2 4 12 16 (89%)</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>13</td>
<td>2 5 6 11 (85%)</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>36 (78%)</td>
</tr>
</tbody>
</table>

- , negative (<10%); ±, weakly positive (10-30%); +, positive (>30%).

In addition to GPC3, HepPar1, HepPar1, CK7 and CK19 were used. In addition to AFP, HepPar1 is frequently used as marker for HCC (4-8) and CK 7 and CK19 for ICC (9-11).

Among 11 CHC cases, 4 cases preoperatively diagnosed as HCC were chosen to represent the collision and transitional type of CHCs based on the macroscopic features of the tumors.
in cut surface. In Fig. 2, macroscopic observation and the immunostained histological sections are shown. These sections include 2 elements with pathological HCC cp forming bile production and trabecular growth pattern by eosinophilic staining and cholangiocarcinoma (CC) cp forming mucin production or gland formation by basophilic staining. Cases 1-8 were GPC3 positive, and cases 9-11 were negative for GPC3 in the HCC cp. Macroscopic, histological and immuno-histochemical features of cases 2, 6, 8 and 10 are shown in Fig. 2a, b, c and d. Case 2 had greenish white and yellow nodules within the same tumor mass in the cut surface. HCC subtypes such as simple nodular and confluent multinodular type exist. Case 2 exhibited the features of HCC with multinodular type (Fig. 2a-i). Pathological diagnosis by H.E. staining revealed CHC pathologically (Fig. 2a-ii and -iii), which was so-called ‘collision’-type tumor as reported by Goodman et al (30). A ‘collision’-type tumor is coincidental occurrence of HCC and CC within the same tumor mass in the cut surface. HCC subtypes such as simple nodular and confluent multinodular type exist. Case 2 exhibited the features of HCC with multinodular type (Fig. 2a-i). Pathological diagnosis by H.E. staining revealed CHC pathologically (Fig. 2a-ii and -iii), which was so-called ‘collision’-type tumor as reported by Goodman et al (30). A ‘collision’-type tumor is coincidental occurrence of HCC and CC within the same tumor mass (31). GPC3 was positive (Fig. 2a-iv), but AFP and HepPar1 were not detected in HCC cp (Fig. 2a-v and -vi). Although HepPar1 is generally used as HCC marker, it was unexpectedly stained in CC region as well as CK7 and CK19 (Fig. 2a-vii and -viii). HepPar1 stained the CC cp as in case 2. The immuno-reactivity of CK19 was not consistent with that of CK7.

Case 6 showed pale and lobulated phenotype in the cut surface macroscopically (Fig. 2b-i), and pathological diagnosis was also confirmed by H.E. staining (Fig. 2b-ii and -iii). This was so-called ‘transitional’ type tumor (30). A ‘transitional’ type tumor has an area of HCC that appears to transform into CC (31). GPC3 was stained in pathological HCC cp (Fig. 2b-iv) where AFP was negative (Fig. 2b-v). The HCC region was surrounded by pathological CC cp with the staining for CK7 (Fig. 2b-vi and -vii). HepPar1 and CK19 were detected in the same region with CC cp (Fig. 2b-iv and -v). Although HepPar1 is generally used as HCC marker, it was unexpectedly stained in CC region as well as CK7 and CK19 (Fig. 2b-vii and -viii). HepPar1 stained the CC cp as in case 2. The immuno-reactivity of CK19 was not consistent with that of CK7.

Case 8 was diagnosed as HCC similarly to cases 2 and 6, but mixed tumor masses with white and gray in the cut surface were observed (Fig. 2c-i and c-ii). Both GPC3 and AFP were positive in HCC cp (Fig. 2c-iv and -v). HepPar1 was stained in CC cp (Fig. 2c-vi). CK7 was stained diffusely in the tumor (Fig. 2c-vii), and CK19 expression was more specific in CC cp than CK7. These three cases (cases 2, 6 and 8) indicated that detecting GPC3 can compensate for AFP and enhance the ability to identify the presence of HCC cp in CHC.

Cases 9, 10 and 11 were negative for GPC3 expression in several tumors. Macroscopically, they had the features of ICC with irregular shaped, white solid tumor masses. As an example, case 10 is shown in Fig. 2d. Although case 10 was diagnosed as HCC preoperatively, it showed macroscopic features of ICC with the presence of abundant fibrous stroma and indistinct tumor margin (Fig. 2d-i). This case was later diagnosed as CHC based on the pathological examination (Fig. 2d-ii and d-iii). GPC3, AFP and HepPar1 were not detected in either HCC cp or CC cp (Fig. 2d-iv, -v, and -vi). CK7 was stained diffusely in the tumor (Fig. 2d-vii), and CK19 expression was more specific in CC cp than CK7 (Fig. 2d-viii). These 3 cases showed positive staining

<table>
<thead>
<tr>
<th>Pt. no.</th>
<th>Preoperative diagnosis</th>
<th>Macroscopic diagnosis</th>
<th>Pathological hepatocellular carcinoma component</th>
<th>Pathological cholangiocarcinoma component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GPC3</td>
<td>AFP</td>
</tr>
<tr>
<td>1</td>
<td>HCC</td>
<td>CHC</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>HCC</td>
<td>HCC</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>HCC</td>
<td>HCC</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>HCC</td>
<td>HCC</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>HCC</td>
<td>HCC</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>HCC</td>
<td>HCC</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>ICC</td>
<td>ICC</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>HCC</td>
<td>HCC</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/8</td>
<td>3/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>38</td>
</tr>
</tbody>
</table>

- , negative (<10%); ±, weakly positive (10-30%); +, positive (>30%); HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; CHC, combined hepatocellular and cholangiocarcinoma; GPC3, glypican-3; AFP, α-fetoprotein; HepPar1, hepatocyto-paraffin 1; CK, cytokeratin; CC, cholangiocarcinoma.
for CK7 and CK19 in CC cp, but not AFP or HepPar1 in HCC cp. Therefore, accuracy of CHC diagnosis can be achieved by combination of multiple tumor markers in addition to morphological characteristics: GPC3 that is specific for pathological HCC cp of CHC, and CK7 and CK19 that are specific for pathological CC cp of CHC.

Discussion

The diagnosis for HCC, ICC and CHC has been routinely performed by histopathological examination. Additionally, diagnosis of HCC is done by supplementary immunohistochemical analysis for AFP and HepPar1. Until now, though...
for ICC cp seems to be useful in the diagnosis of liver cancer. Concerning sensitivity and accurate diagnosis of CHC containing both hepatocellular differentiation or HCC with hepatocellular differentiation leaning toward either ICC with predominant biliary differentiation and HCC with hepatocellular differentiation (42,43). These were highly expressed in pathological CC cp (10/11, 91%) in CHC. The immunoreactivity of CK19 was more distinct than that of CK7 whose staining was weaker. Our immunohistochemical analysis for GPC3 expression is indispensable for the process of patient selection. GPC3 is expressed in the group of cells that are AFP-negative and/or CK7/19-positive in injured livers with activation of oval cell compartment; an indication for liver repair and regeneration (48). In addition, CK7, CK19 and AFP are frequently expressed in biliary epithelial cells (49,50) and in immature fetal hepatoblasts (51,52). Liver progenitor cells originate from the canal of Hering, lined by both hepatocytes and biliary ductular epithelial cells (53). It is not clear whether GPC3 is expressed in hepatic embryonic progenitor cells or cancer stem cells, but GPC3 may be a marker for hepatic progenitor/stem cells. In CHC cases of 2, 3 and 4, GPC3, CK7 and CK19 coincided in the regions of HCC and CC. Although HCC and ICC are two different kinds of primary liver malignancies arising from different cell types as hepatocytes and cholangiocytes, co-localization of GPC3 and CK7/19 suggest that the CHC is originated from progenitor or oval cell. In addition, case 6 showed an HCC lesion with GPC3 positive immunostaining surrounded by CC (Fig. 2b). This finding suggests that GPC3-positive HCC tumor cells are derived from GPC3-negative CC mass. Moreover, we predict from the fact that GPC3 is expressed in embryonic liver and downregulated after birth in normal liver but reappears in cancer is due to its regulatory role in proliferative and dedifferentiated cells, like cancer cells that acquired a progenitor- or cancer stem cell-like characteristics. In summary, we confirmed that GPC3 is a marker sensitive and specific for HCC, but not ICC. Moreover, we revealed that GPC3 was expressed specifically in the HCC cp in the CHC. Therefore, GPC3 is a molecule that is significant not only in clinical but also biological field. It is clinically an important biomarker that can be used for accurate diagnosis leading to a better treatment and prognosis. Also, biologically, it may be an indicator for the identity and the origin of the cancer cells.

Acknowledgments

This study was supported in part by Health and Labor Sciences Research Grants for Research on Hepatitis from the Ministry of Health, Labor, and Welfare, Japan, and a grant-in-aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare, Japan. Foundation for Promotion of Cancer Research in Japan, Japan Research Foundation for Clinical Pharmacology and Research Resident Fellowship from the Foundation for Promotion of Cancer Research, Japan (H.S.). We thank Dr Chinatsu Kojima (Section for Cancer Immunotherapy, Investigative Treatment Division,
Research Center for Innovative Oncology, National Cancer Center Hospital East) for technical assistance.

References