Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients

GIROLAMO RANIERI1,8, MICHELE AMMENDOLA2, ROSA PATRUNO3, GIUSEPPE CELANO3, FRANCESCO ALFREDO ZITO4, SEVERINO MONTEMURRO5, ADDOLORATA RELLA6, VALENTINA DI LECCE4, COSMO DAMIANO GADALETA1, GIOVANNI BATTISTA DE SARRO2 and DOMENICO RIBATTI7

1Interventional Radiology Unit, Department of Critical Area and Surgery, National Cancer Institute Giovanni Paolo II of Bari; 2Clinical Pharmacology Unit, University Magna Graecia of Catanzaro Medical School, Catanzaro; 3Pathology Labaratory, University of Bari; 4Pathology Unit and 5Department of Surgical Oncology, National Cancer Institute Giovanni Paolo II of Bari; 6Gynaecological Unit, USL BA/3; 7Department of Human Anatomy and Histology, University of Bari Medical School; 8Department of Experimental Oncology, National Cancer Institute Giovanni Paolo II of Bari, Bari, Italy

Received November 25, 2008; Accepted January 25, 2009

DOI: 10.3892/ijo_00000319

Abstract. Literature data indicate that mast cells (MCs) are involved in tumor angiogenesis due to the release of several pro-angiogenic factors among which tryptase, a serine protease stored in MCs granules, is one of the most active. However, no data are available concerning the role of MCs in angiogenesis in primary human breast cancer. In this study, we have evaluated the correlations between the number of MCs positive to tryptase (MCDPT), the area occupied by MCs positive to tryptase (MCAPT) and microvascular density (MVD) and endothelial area (EA) in a series of 88 primary T1-3, N0-2 M0 female breast cancer, by means of immunohistochemistry and image analysis methods. Data demonstrated a significant (r = from 0.78 to 0.89; p-value from 0.001 to 0.002 by Pearson’s analysis respectively) correlation between MCDPT, MCAPT, MVD, EA to each other. No correlation concerning MCDPT, MCAPT, MVD, EA and the main clinicopathological features was found. Our results suggest that tryptase-positive MCs play a role in breast cancer angiogenesis. In this context several tryptase inhibitors such as gabexate mesilate and nafamostat mesilate might be evaluated in clinical trials as a new anti-angiogenetic approach.

Introduction

Angiogenesis plays a crucial role in tumor growth in situ and at distance and is a well established anti-tumor target (1-4). Mast cells (MCs) intervene in tumor angiogenesis (5-7), throughout several classical pro-angiogenic factors such vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), platelet-derived growth factor (PDGF), interleukin-6 (IL-6), and non classical pro-angiogenic factor, such as tryptase and chymase, stored in their secretory granules (8-11).

Data from experimental tumor models suggest that MCs accumulate near to tumor cells before the onset of angiogenesis and that they are required for macroscopic expansion and metastatic spread of primary tumor cells (12,13). Evidence for a specific role for MCs has been reported in animal and human cancers, such as mast cell tumors, head and neck, gastric, lung and cutaneous malignancies, where MCs density is highly correlated with the extent of tumor angiogenesis (14-18).

In benign breast lesions and in primary breast cancer, tryptase-positive MCs are more numerous as compared to chymase-positive MCs (19). Recently, it has been demonstrated that tryptase-positive MCs are involved in angiogenesis in sentinel lymph nodes with micrometastases from patients with breast cancer (20). However no data have been published regarding the correlations between MCs positive to tryptase and angiogenesis in primary breast cancer tissue.

In the present study, we have evaluated the correlations between the number of MCs positive to tryptase (MCDPT), the area occupied by MCs positive to tryptase (MCAPT), microvascular density (MVD) and endothelial area (EA) in a series of primary T1-3, N0-2 M0 female breast cancer, by means of immunohistochemistry and image analysis methods.
Patients and methods

Patients. The clinicopathological features of the patients are summarized in the Table I. Biopsy specimens were collected from 88 female breast cancer patients who had undergone breast cancer surgery, classified accordingly the presence of a primary, invasive breast tumor (stage T1-T3), the presence or not of metastases in axillary lymph nodes (stage N0-N2), the absence of distant metastases (M0), the presence of unilateral breast cancer and the absence of previous or concomitant primary cancer. Patients were staged according to the International Union Against Cancer Tumor Node Metastasis (UICC-TNM) classification. Patients had not received neo-adjuvant therapies, they were subjected to a modified radical mastectomy (37 patients in which the tumor had a diameter >3 cm) or to a quadrantectomy followed by 5-6 weeks of radiation therapy (51 patients) and axillary lymph nodes were surgically removed when sentinel lymph node were positive. On the basis of clinicopathological features patients were then evaluated to receive adjuvant hormonal therapy or chemo-therapy or both.

Immunohistochemistry. The histological diagnosis was made on haematoxylin-eosin-stained slides and histopathological grading was performed according to the criteria described by Bloom and Richardson, as well, moderately and poorly differentiated state (21).
For the evaluation of MCDPT, MCAPT, MVD and EA, a three layer biotin-avidin-peroxidase system was utilized, as previously described (22). Briefly, six-micrometer thick serial sections of formalin-fixed and paraffin-embedded biopsy tumor samples were deparaffinized. Then, for antigen retrieval, sections were microwaved at 500 W for 10 min, after which endogenous peroxidase activity was blocked with 3% hydrogen peroxide solution. Next, slides were incubated with human-specific monoclonal antibodies anti-CD34 (QB-END 10; Bio-Optica Milan, Italy) diluted 1:50 for 1 h at room temperature and anti-tryptase (clone AA1; Dako, Glostrup, Denmark) diluted 1:100 for 1 h at room temperature. The bound antibody was visualised using biotinylated secondary antibody, avidin-biotin peroxidase complex and 3-amino-9-ethylcarbazole or 3,3 diaminobenzidine. Nuclear counterstaining was performed with Gill's haematoxylin no. 2 (Polysciences, Warrington, PA, USA). Primary antibody was omitted in negative controls.

Morphometrical assay. An image analysis system (Quantimet 500 Leica, Wetzlar, Germany) was utilized. The five most vascularized areas (‘hot spot’) were selected at low magnification and both individual vessels (Fig. 1A) and MCs (Fig. 1B) were counted at x400 magnification (15). Single brown stained endothelial cells, endothelial cell clusters and microvessels, clearly separated from adjacent microvessels, tumor cells and other connective tissue elements were counted (22). Areas of necrosis were not considered for counting. In serial sections each single tryptase-positive MC was counted. Single brown stained endothelial cells and red MCs positive to tryptase were also evaluated in terms of immunostained area at x400 magnification (22).

Statistical analysis. MCDPT, MCAPT, MVD, EA mean values ± 1 standard deviations (SD) were evaluated by two independent observers (G.R. and F.A.Z.) for each tumor sample and in all series of sections. Correlations between MCDPT, MCAPT, MVD and EA to each other were calculated using Pearson's (r) analysis. The correlations between the above indexes and the clinicopathological features listed in Table I were analyzed by Chi-square test. All statistical analysis were performed with the SPSS statistical software package (SPSS, Inc., Chicago, IL).
Figure 3. Correlation analysis between MCDPT and MVD (r=0.83, p=0.001); MCAPT and MVD (r=0.80, p=0.001); MCDPT and EA (r=0.86, p=0.001); MCAPT and EA (r=0.81; p=0.001); MVD and EA (r=0.88; p=0.001); MCDPT and MCAPT (r=0.75, p=0.002).

Table II. MCDPT, MCAPT, MVD and EA means ± 1 standard deviations in a series of 88 breast cancer patients.

<table>
<thead>
<tr>
<th>MCDPT x400 magnification (0.19 mm² area)</th>
<th>MCAPT x400 magnification (0.19 mm² area)</th>
<th>MVD x400 magnification (0.19 mm² area)</th>
<th>EA x400 magnification (0.19 mm² area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8±6a</td>
<td>173.42 μ² ± 131.16a</td>
<td>32 ± 17a</td>
<td>189.33 μ² ± 115.64a</td>
</tr>
</tbody>
</table>

*aMean ± 1 standard deviation.
Results

Immunohistochemical staining by using the antibodies anti-CD34 and anti-tryptase allow to demonstrate that in highly vascularized breast cancer tissue tryptase-positive MCs are well recognizable and generally they are located in perivascular position (Figs. 1 and 2).

Mean values ± 1 SD of all the evaluated parameters are listed in Table II. There was a significant correlation between MCDPT and MVD (r=0.83, p=0.001), between MCAPT and MVD (r=0.80, p=0.001), between MCDPT and EA (r=0.86, p=0.001), between MCAPT and EA (r=0.81; p=0.001), between MVD and EA (r=0.88; p=0.001) and between MCDPT and MCAPT (r=0.75, p=0.002) (Fig. 3). No correlation concerning MCDPT, MCAPT, MVD, EA and the main clinicopathological features was found.

Discussion

In this study, for the first time, we found in a series of 88 primary T1-3, NO-2 M0 female breast cancer, that the number of MCs positive to tryptase (MCDPT), the area occupied by MCs positive to tryptase (MCAPT), microvascular density (MVD) and endothelial area (EA) correlate to each other.

Tryptase is one of the most powerful angiogenic mediators released by human MCs and it may be angiogenic via several mechanisms (23-26). Blair et al have demonstrated that direct addition of tryptase to microvascular endothelial cells cultured on Matrigel caused a pronounced increase of capillary growth, which was suppressed by specific tryptase inhibitors, and directly induced endothelial cell proliferation in a dose-dependent fashion (10). Tryptase is involved in tissue remodelling and it may also act indirectly on tissue neovascularization by releasing latent angiogenic factors bound to the extracellular matrix (27). Tryptase is an agonist of the proteinase-activated receptor-2 (PAR-2) in vascular endothelial cells and breast cancer cells (28-33). Activation of PAR-2 induce cell proliferation and release of IL-6 and granulocyte-macrophage colony stimulating factor (GM-CSF), which, in turn, act as angiogenic molecules (34).

It has been previously demonstrated that in several types of malignancies such as multiple myeloma, oral squamous cancer, melanoma, gastrointestinal cancer and lung cancer there is a correlation between tryptase-positive MCs and microvessel counts and both increase in function of malignancy (7,14-18,35-38). Accordingly, in this study we have demonstrated that also in breast cancer tissue there is a strong association between the number of MCs positive to tryptase and MVD. When we evaluated MCs positive to tryptase and angiogenesis in terms of morphometrical parameters we showed a strong association between the area occupied by MCs positive to tryptase and the area occupied by immunostained endothelial cells in terms of morphometrical angiogenesis. Interestingly tryptase positivity is observed near or around microvessels with a small evident lumen. Taken together these data suggest that MCs positive to tryptase may play a role in primary breast cancer angiogenesis, but they are not correlated with the main clinicopathological features (39).

In this context several tryptase inhibitors such as gabexate mesilate and nafamostat mesilate (40,41) might be tested in clinical trials as a new anti-angiogenetic approach.

Acknowledgements

This study was supported in part by grants from Alleanza Contro il Cancro - Istituto Superiore di Sanità, Italy.

References

