Nicotinamide phosphoribosyltransferase and prostaglandin H\(_2\) synthase 2 are up-regulated in human pancreatic adenocarcinoma cells after stimulation with interleukin-1

LUKAS BAUER\(^1\), SIMONE VENZ\(^1,2\)*, HEIKE JUNKER\(^1\), ROWENA BRANDT\(^1\) and JÜRGEN RADONS\(^1\)

\(^1\)Institut für Medizinische Biochemie und Molekularbiologie, \(^2\)Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald, Germany

Received January 19, 2009; Accepted March 26, 2009

DOI: 10.3892/ijo_00000317

Abstract. Human pancreatic cancer is today an almost incurable disease with a 5-year survival rate of <5%. Chronic inflammation in the tumor region is often associated with cancer progression. In pancreatic tumors, the pro-inflammatory cytokine IL-1 has been found to affect the development of chemoresistance in this cancer type. In a search for new therapeutic targets we investigated the effect of this pro-inflammatory mediator on pancreatic cancer protein expression. Therefore, the human pancreatic adenocarcinoma cell line Colo357 was subjected to proteomic analysis after stimulation with IL-1 using 2D gel electrophoresis and mass spectrometry. We detected 11 spots as being differentially expressed after stimulation with IL-1 representing 11 different proteins. Among them, nicotinamide phosphoribosyltransferase (NAMPT) and prostaglandin H\(_2\) synthase 2 (PGHS-2) are crucial proteins whose expression in Colo357 is increased by IL-1. This study is the first one demonstrating an up-regulation of NAMPT in a tumor model for human pancreatic cancer. Several clinical trials using selective PGHS-2 or NAMPT inhibitors alone did not lead to an improvement in clinical outcome. Against the background of a high cardiovascular risk associated with PGHS-2-specific pharmacological inhibitors, we recommend a combinatory treatment with selective NAMPT and PGHS-2 inhibitors. Such combined administration should positively affect the balance between risk and benefit in fighting the interplay of tumor-associated pancreatic inflammation and carcinogenesis in high-risk patients with pancreatic neoplasia.

Introduction

Pancreatic cancer is the fourth cause of cancer-related mortality in the USA and the sixth one in Europe with more than 250,000 patients estimated to die of the disease worldwide (1). This cancer entity is one of the most deadly of all malignancies with a death to incidence ratio approaching one making mortality rate a robust approximation of incidence for pancreatic cancer (2). The incidence of pancreatic cancer correlates with increasing age reaching a peak in the 65-75-years old age group (3). Approximately three-fourths of patients will die within one year of diagnosis and <5% survive up to 5 years after diagnosis (4). The poor outcome of pancreatic cancer is reflected by non-resectable primary lesions, locally advanced tumors, and a high metastatic potential (5). Since only a few patients benefit from classical adjuvant chemo- and radiotherapy, complete surgical resection is the superior treatment modality for patients with resectable disease. Unfortunately, the majority of pancreatic cancer patients present with locally advanced or metastatic tumors are not amenable for curative surgery. Only a disappointing 15% of patients at the time of diagnosis are eligible to undergo surgical excision, and even patients who have undergone such curative resection often die of recurrent carcinoma (6).

In recent years, the association of chronic inflammation with the development of cancer has been rediscovered (reviewed in ref. 7). Pancreatic inflammation has been shown to play a key role in the development of pancreatic malignancy obviously mediated by the release of reactive oxygen intermediates, cytokines and the induction of pro-inflammatory signaling cascades (8). Patients suffering from hereditary pancreatitis have a 50 times higher risk of developing pancreatic carcinoma compared to healthy individuals (9). Convincingly, 40% of patients with hereditary pancreatitis are diagnosed with pancreatic cancer within the seventh life decade (10). The persistent expression of pro-inflammatory cytokines at tumor sites exert pleiotropic effects on the malignant process. On the one hand, they affect carcinogenesis and malignant transformation, tumor growth, invasion and metastases, on the other hand they activate immune effector mechanisms limiting tumor growth. Of special relevance to the malignant process is IL-1.

Correspondence to: Dr Jürgen Radons, Institut für Medizinische Biochemie und Molekularbiologie, Universitätsklinikum Greifswald, Ferdinand-Sauerbruch-Strasse, D-17489 Greifswald, Germany
E-mail: juergen.radons@uni-greifswald.de

Key words: proteomic analysis, pancreatic carcinoma, prostaglandin H\(_2\) synthase 2, nicotinamide phosphoribosyltransferase, interleukin-1, Colo357
that has been found to affect development of chemo-
resistance in pancreatic tumors (11). Moreover, IL-1 induces
the expression of several pro-inflammatory genes in diverse
inflammatory and stromal cells promoting tumor growth and
invasiveness. In stromal and malignant cells, IL-1 induces
secretion of angiogenic as well as growth- and invasiveness-
promoting factors contributing to tumor progression (12). In
contrast, anti-tumor immunity, reduced metastasis and
increased survival rates can also be observed (13,14). Less is
known about the effects of IL-1 on the process of pancreatic
carcinogenesis. Recent data indicate a promoting activity on
angiogenesis during tumor progression (15). IL-1 signal
transduction is initiated by binding of either form of IL-1 to
IL-1 receptor type I (IL-1R1), which undergoes a confor-
mational change allowing the IL-1 receptor accessory protein
(IL-1RaCp) to recognize the ligated IL-1R1. IL-1RaCp does
not recognize IL-1 but represents an essential component in
the IL-1 signaling pathway (16,17). Ligand-mediated
heterodimerization of the receptor complex leads to the
induction of several intracellular signaling pathways culminating in the activation of a great variety of transcription factors including NF-κB (18). More recently, it has become clear that NF-κB signaling plays a critical role in cancer development and progression (19).

Since pancreatic carcinoma is largely refractory to con-
ventional therapies, there is a strong medical need for the
development of novel therapeutic strategies. In a search for
putative therapeutic targets we investigated the effect of pro-
inflammatory IL-1 on pancreatic cancer protein expression.
For this purpose, the human pancreatic adenocarcinoma
cell line Colo357 was subjected to proteomic analysis after
stimulation with IL-1 using 2D gel electrophoresis and mass
spectrometry in order to determine alternately expressed
proteins. Mass spectrometric analysis of tryptic peptides
identified two proteins found in more abundance in these cells
as nicotinamide phosphoribosyltransferase and prostaglandin
H2 synthase 2 whose expression is up-regulated under tumor-
associated pancreatic inflammatory conditions. Thus, our
data might have future clinical implications with respect to
the development of novel approaches as an adjuvant therapy
in high-risk patients with human pancreatic carcinoma.

Materials and methods

Cell culture and stimulation. The human pancreatic adenocarcinoma cell line Colo357, kindly provided by Dr G. Multhoff (Klinikum rechts der Isar, Abteilung für Radio-
therapie und Radioonkologie, Technische Universität München, Germany) was frozen in aliquots of 2.5x10^6 cells/ml in liquid nitrogen. After thawing, Colo357 cells were
seeded in 6-cm culture plates and, after a recovery phase of
at least 16 h, stimulated with 1 ng/ml of recombinant human
IL-1β (Pan Biotech, Aidenbach, Germany) for the indicated
time-points. For proteome analysis total protein was
extracted from Colo357 cells seeded in 6-cm culture plates and, after a recovery phase of
at least 16 h, stimulated with 1 ng/ml of recombinant human
IL-1β (Pan Biotech, Aidenbach, Germany) for the indicated
time-points.

Protein extraction. For proteome analysis total protein was
extracted from Colo357 cells seeded in 6-cm culture plates and, after a recovery phase of
at least 16 h, stimulated with 1 ng/ml of recombinant human
IL-1β (Pan Biotech, Aidenbach, Germany) for the indicated
time-points.
Digestion with trypsin and subsequent spotting of peptide 2-DE gels using a spot cutter (Proteome Works™, Bio-Rad). Proteins were excised from Colloidal Coomassie Brilliant Blue-stained gels. Proteins were sequenced with an individual ion score of >28 (p<0.05).

London, UK) was used with a SwissProt rel.54.6 database. Searches the Mascot search engine (Matrix Science Ltd., London, UK) and an integrated Mascot script. For database data were analyzed with the Bioanalyst™ Software (Applied Biosystems). Peptide mixtures that yielded at least twice a mouse score of at least 55 for SwissProt results were regarded as positive identifications (20).

Analysis of mRNA expression by quantitative RT-PCR. Total RNA was extracted from cultured Colo357 cells using TriFast Reagent (PEQLAB Biotechnologie GmbH) according to the manufacturer's instructions. RNA quantity was assessed by UV spectrophotometry. Reverse transcription was performed with 1 μg of RNA and oligo(dT) primer using Transcriptor High Fidelity cDNA Synthesis Kit (Roche, Mannheim, Germany) according to the manufacturer's protocol. PCR was carried out as a TaqMan method using the Bio-Rad CFX96 cycler and white 96-well reaction plates (Biozym, Hessisch Oldendorf, Germany). All real-time PCR reactions were run in a reaction volume of 10 μl, including 5 μl of 2x SensiMix dT (Quanta, London, UK), 0.8 μl cDNA, 500 nM of each primer and 200 nM probe using the following cycling conditions: 95°C for 10 min followed by 44 cycles at 95°C for 10 sec, 60°C for 20 sec and 72°C for 1 sec. The fluorescence signal was monitored during the 72°C step. Each sample including blank controls were run in triplicate in three different PCR assays. PCR primers and 5'-FAM-3'-TAMRA-labelled probes were designed and synthesized by Microsynth (Balgach, Switzerland). For detailed sequence information see Table I. The amplicon length ranged between 95 and 136 bp. All primer pairs used in this study are located on different exons. For relative quantification, cDNA dilution series were run to set up a standard curve. Data analysis was performed with the CFX Manager™ software which employs a ΔΔC(t) relative quantification algorithm with PCR efficiency correction and single reference gene normalization.

Western blot analysis. Protein samples of 15 μg were separated by 12.5% SDS-PAGE. Fractionated proteins were transferred electrophoretically onto nitrocellulose membranes and blocked with 10% (v/v) Roti-Block (Carl Roth GmbH). Primary antibodies used were rabbit anti-human PGH synthase 2 (1:2,000; Acris Antibodies, Herford, Germany), mouse anti-human NAMPT (1:2,500; Alexis Biochemicals, San Diego, CA, USA) and rabbit anti-human GAPDH (1:5,000) from LabFrontiers Co. Ltd. (Seoul, Korea). Membranes were incubated with the primary antibodies for 1 h at RT or overnight at 4°C in TBST consisting of TBS/0.1% (v/v) Tween-20/5% (w/v) BSA, washed 3x10 min with TBST and subsequently incubated for 1 h at RT with HRP-conjugated rabbit-IgG (1:10,000)
and mouse-IgG (1:5,000), respectively (both from Cell Signaling Technology, Boston, MA, USA). The presence of the proteins identified by MS/MS was revealed using the LumiGLO® chemiluminescent substrate (Cell Signaling Technology). For densitometric analysis films were scanned, and the intensity of the corresponding bands was quantified.

Table I. Sequences for primer and probes used in real-time PCR assays.

<table>
<thead>
<tr>
<th>Gene/NIH accession no.</th>
<th>Primer/probe Amplicon (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGHS-2/NM_000963</td>
<td>For: 5'-TGG AAC ATG GAA TTA CCC AGT TTG-3' 95</td>
</tr>
<tr>
<td></td>
<td>Rev: 5'-TTT CTG TAC TGC GGG TGG AAC-3'</td>
</tr>
<tr>
<td></td>
<td>Probe: 5'-CCT ACC ACC AGC AAC CCT GCC AGC-3'</td>
</tr>
<tr>
<td>NAMPT/NM_005746</td>
<td>For: 5'-GAG TTA TTC AAG GGG ATG GAG TAG-3' 136</td>
</tr>
<tr>
<td></td>
<td>Rev: 5'-AGA TCT CTT GTC AAC TTC TGT AGC-3'</td>
</tr>
<tr>
<td></td>
<td>Probe: 5'-AAC CTC CAC CAG AAC CGA AGG CAA-3'</td>
</tr>
<tr>
<td>RPLP0/NM_001002</td>
<td>For: 5'-GGG AAT GTG GGC TTT GTG TTC-3' 123</td>
</tr>
<tr>
<td></td>
<td>Rev: 5'-TGG CAC AGT GAC TTC ACA TGG-3'</td>
</tr>
<tr>
<td></td>
<td>Probe: 5'-CAA TGG CAC CAG CAC GGG CAG CA-3'</td>
</tr>
</tbody>
</table>

For, forward; Rev, reverse; RPLP0, ribosomal phosphoprotein, large, P0.

Figure 1. Dual channel image of fused sample gel images (orange) warped to fused control gel images (blue) representing protein patterns obtained by 2-DE derived from control and IL-1-treated Colo357 human pancreatic adenocarcinoma cells. Cells were incubated for 24 h in the presence or absence of 1 ng/ml of recombinant human IL-1β. After preparation of cell lysates, proteins were resolved by IEF over the pl range 3-10, followed by 12.5% SDS-PAGE and visualized by Roti-Blue staining. Significantly differentially expressed proteins are labelled by numbers.
using Kodak 1D Image Analysis Software and standardized to GAPDH.

Statistical analysis. Statistical analysis of Western blots and real-time PCR was performed using GraphPad Prism 3.0 software package (GraphPad Software, Inc., La Jolla, CA, USA). Standardized net intensities of sample bands were divided by control band intensities. Resulting relative expression values for PGHS-2 and NAMPT were analyzed in a two-tailed Mann-Whitney test against $\mu_0 = 1$ as the theoretical mean of controls and are expressed as means ± SEM. Differences were considered as significant for $p<0.05$.

Results

Detection of protein spots on 2-DE gels. Protein expression was compared between untreated and IL-1-stimulated Colo357 human pancreatic adenocarcinoma cells. At least 956 protein spots were matched on each 2-DE gel. The differential expression of paired control and IL-1-stimulated cells was detected by Delta2D software. Eleven spots were modulated in the presence of IL-1 >1.5-fold with $p<0.05$. Among them, 10 spots showed up-regulation (spots 1-9, spot 11) whereas one spot (spot 10) showed down-regulation at the protein level. All 11 spots were chosen for cutting off and subsequent mass spectrometric analysis (Fig. 1).

Table II. Measurement of 11 protein spots by mass spectrometry.

<table>
<thead>
<tr>
<th>Spot ID</th>
<th>Name</th>
<th>Peptides</th>
<th>Score</th>
<th>MW</th>
<th>pI</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not identified</td>
<td>19</td>
<td>92</td>
<td>74095</td>
<td>6.57</td>
<td>1.55</td>
</tr>
<tr>
<td>2</td>
<td>Lamin-A/C</td>
<td>13</td>
<td>78</td>
<td>68952</td>
<td>7.02</td>
<td>1.98</td>
</tr>
<tr>
<td>3</td>
<td>Not identified</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>Prostaglandin H$_2$ synthase 2</td>
<td>18</td>
<td>159</td>
<td>68952</td>
<td>7.02</td>
<td>3.17</td>
</tr>
<tr>
<td>5</td>
<td>Not identified</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.67</td>
</tr>
<tr>
<td>6</td>
<td>Prostaglandin H$_2$ synthase 2</td>
<td>21</td>
<td>210</td>
<td>68952</td>
<td>7.02</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>Not identified</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.17</td>
</tr>
<tr>
<td>8</td>
<td>Prostaglandin H$_2$ synthase 2</td>
<td>4</td>
<td>87</td>
<td>68952</td>
<td>7.02</td>
<td>3.4</td>
</tr>
<tr>
<td>9</td>
<td>Nicotinamide phosphoribosyltransferase</td>
<td>30</td>
<td>835</td>
<td>55487</td>
<td>6.69</td>
<td>1.66</td>
</tr>
<tr>
<td>10</td>
<td>Not identified</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.67</td>
</tr>
<tr>
<td>11</td>
<td>Leukocyte elastase inhibitor</td>
<td>19</td>
<td>1015</td>
<td>42829</td>
<td>5.9</td>
<td>1.76</td>
</tr>
<tr>
<td>12</td>
<td>Poly-(rC)-binding protein 2</td>
<td>6</td>
<td>360</td>
<td>38955</td>
<td>6.33</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mitotic checkpoint protein BUB3</td>
<td>2</td>
<td>141</td>
<td>37587</td>
<td>6.36</td>
<td></td>
</tr>
</tbody>
</table>

Spots were cut from Coomassie gels and proteins submitted to in-gel digestion by trypsin. Fragment masses and partial sequences were obtained by MALDI-TOF/TOF or ESI-MS/MS. Protein identification was performed by fragment-mass and sequence comparison with SwissProt database 54.6; cut-off score >55 for MALDI-TOF/TOF or cut-off score >28 for ESI-MS/MS with $p<0.05$. aSwissProt ID; bnumber of matched peptides; cidentification score; dtheoretical molecular weight; e theoretical isoelectric point.
ribosyltransferase (NAMPT) and prostaglandin H2 synthase 2 (PGHS-2) were found in more abundance in IL-1-stimulated Colo357 cells compared to the untreated controls. NAMPT was identified in one spot (spot 09), whereas PGHS-2 was found in four different spots (spots 02,04,06,08) as demonstrated in Fig. 2. Other proteins, whose expression was up-regulated by IL-1, are as follows: leukocyte elastase inhibitor (LEI), septin-2 (SEPT2), poly-(rC)-binding protein 2 (PCBP2) and mitotic checkpoint protein BUB3 (BUB3) in spot 11; mitochondrial precursor of glycerol-3-phosphate dehydrogenase (GPDM) in spot 06 as well as mitochondrial precursor of glutathione reductase (GSHR) and UTP-glucose-1-phosphate uridylyltransferase 2 (UGPA) in spot 09. We also identified lamin-A and lamin-C in spots 02+06, respectively. These molecules represent isoforms of the same protein generated by alternative splicing from the corresponding mRNA. However, our proteomic approach did not allow to differentiate between these two isoforms.

Expression profiles of NAMPT and PGHS-2. Since NAMPT and PGHS-2 had been characterized previously as playing a crucial role in malignancy, they were selected for further analyses. For this purpose, we treated Colo357 cells with or without IL-1 and analyzed changes in the expression levels of NAMPT and PGHS-2 by quantitative RT-PCR. As demonstrated in Fig. 3, IL-1 induced a strong up-regulation of the NAMPT and PGHS-2 mRNA expression in a time-dependent manner. PGHS-2 expression reached a maximum after 24 h in the presence of IL-1 and declined thereafter.
contrast, NAMPT expression reached a plateau during this time and remained constantly for a further 48 h. In order to test whether this time course in IL-1-induced gene expression of NAMPT and PGHS-2 might affect protein expression profiles in a comparable way, we determined expression patterns of both molecules at the protein level in lysates of Colo357 after stimulation with IL-1. Consistent with the results obtained by quantitative real-time PCR, IL-1 was found to induce a massive up-regulation of the NAMPT and PGHS-2 protein expression in a time-dependent manner as determined by Western blot analyses. Whereas PGHS-2 protein expression peaked within 24 h of IL-1 stimulation followed by a rapid degradation, NAMPT protein expression reached a maximum after one day and remained unaffected during the following observation period (Fig. 4).

Discussion

Pancreatic cancer is one of the most fatal among all solid malignancies. Retrospective studies have revealed a global increase in the mortality rate of pancreatic carcinoma. This trend of an increasing incidence, together with the poor prognosis of the disease, emphasizes the need to develop novel therapeutic approaches. In the present study we therefore aimed to identify putative target molecules that could lead to an improved treatment and diagnosis, respectively. For these studies, the human pancreatic adenocarcinoma cell line Colo357 was chosen. Colo357 was originally derived from a lymph node metastasis of a human non-endocrine pancreatic cancer and characterized as being moderately differentiated (22). Colo357 harbors point mutations in the K-ras proto-oncogene (23), a common feature of pancreatic ductal neoplasms obviously contributing to the malignant phenotype, since activating point mutations in the K-ras proto-oncogene are encountered in >90% of pancreatic carcinomas (24).

In an unpublished observation by our group, Colo357 was found to dramatically up-regulate tumorigenic factors in the presence of the pro-inflammatory cytokine IL-1. In order to identify differentially expressed molecular targets under tumor-associated pancreatic inflammatory conditions, Colo357 was used in a quantitative proteomic approach. Analysis of the aberrantly expressed proteome in this human pancreatic adenocarcinoma cell line identified 11 proteins whose expression is up-regulated under tumor-associated inflammatory conditions. Not surprisingly, some of them such as the mitotic checkpoint protein BUB3, lamin-A/C and septin-2 (SEPT2) are evolutionarily conserved proteins with essential functions in cytokinesis and more subtle roles throughout the cell cycle.

BUB3 belongs to the major spindle checkpoint proteins over-expressed in several breast and gastric cancer cells (25,26). The strong correlation of BUB3 expression and tumor cell proliferation in gastric cancer suggests that BUB3 over-expression is a proliferation-dependent phenomenon. Based on these findings one can assume that the IL-1-induced up-regulation of BUB3 in Colo357 might contribute to the high proliferative response of human pancreatic cancer cells supporting tumor growth and invasiveness.

SEPT2 is a member of the conserved family of septins. These GTP-binding proteins have several roles during cell division, cytoskeletal organization and membrane-remodelling events. The role of SEPT2 in tumorigenesis is controversially discussed in the literature. Whereas SEPT2 has been found to be down-regulated in human glioblastoma and breast cancer cells (27,28), an increased expression of SEPT2 in renal cell carcinoma was shown to be a common event (29). From these data we speculate that septins might belong to a class of cancer critical molecules where alterations in the expression profile may underline their role in neoplasia.

Lamin A/C comprises a group of structurally related proteins generated by alternative splicing. Lamins are members of a protein family that are the main structural elements of the nuclear envelope in eukaryotic cells. Unlike lamin C, A-type lamins are the main components of the nuclear lamina and represent type V intermediate filament proteins encoded by the gene LMNA (30). Mutations in LMNA give rise to diverse degenerative diseases related to premature ageing. Otherwise A-type lamins also affect the
activity of the retinoblastoma protein (pRb) and oncoproteins such as β-catenin. Consequently, it has been speculated that the expression of A-type lamins may also affect tumor progression. Willis et al observed that lamin-A is expressed in colonic stem cells and that patients with A-type lamin-expressing tumors have a significantly worse prognosis than patients with A-type lamin-negative tumors. From these observations we hypothesize that up-regulation of lamin A might also represent a putative marker for the poor prognosis in pancreatic carcinoma.

Poly-(C)-binding protein 2 (PCBP2), one of the proteins over-expressed in Colo357 under the influence of IL-1, belongs to a group of heterogeneous nuclear ribonucleoproteins which bind RNA during transcription and take part in the process of splicing. These proteins indicate high synthesis rates of the expressing cells. The analysis of several gene expression profiling studies demonstrated a consistently elevated expression of the PCBP2-mRNA in metastatic prostate cancer (31). A meta-analysis of human microarray information with an algorithm discerning similarities in gene-regulatory profiles identified two molecules, PCBP2 and the stress kinase-interacting protein 1 (SIN1), as being generally co-regulated with large numbers of genes implicated in both, cell survival and cellular stress responses including RNA translation and processing (32). SIN1 is a scaffold protein that organizes anti-apoptotic stress responses, whereas PCBP2, its binding partner, provides for the selective expression of cell survival factors through posttranslational events.

Another protein up-regulated by IL-1 and co-chromatographing with PCBP2, BUB3, and SEPT2 in Colo357 was identified as leucocyte elastase inhibitor LEI. LEI belongs to the ovalbumin subgroup of serpins (serine protease inhibitors). Most of them inhibit target proteases and present diversified functions (33). The anti-protease activity of LEI is essential for its anti-apoptotic effect obviously mediated via cleavage of procaspase-8 (34). LEI over-expression slows down this cleavage thus protecting cells from apoptosis suggesting that high expression of LEI in pancreatic carcinoma cells might be jointly responsible for the chemoresistance of human pancreatic cancer. In contrast, studies using papilloma virus-transformed keratinocytes indicated a more likely down-regulation of LEI (35) obviously reflecting peculiarities of these tumor cells or influence of the microenvironment.

In the present study an IL-1-induced up-regulation of the mitochondrial precursor of glyceraldehyde-3-phosphate dehydrogenase (GPDM) could also be observed. The mature protein is the rate-limiting enzyme in the glycerol phosphate shuttle, which is thought to play an important role in cells requiring an active glycolytic pathway (36). Over-expression of enzymes involved in the glycolytic pathway is a common feature of cancerous tissues. Increased glycolysis in cancer cells has been regarded as the result of intratumoral hypoxia and is possibly associated with tumor invasion, metastasis or resistance to therapy (37). As reported previously, GPDM participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis (38). It is well established that most malignant cells produce high levels of reactive oxygen species (ROS) compared to normal cells. In this context Chowdhury et al evaluated the glycerophosphate-dependent ROS production in prostate cancer cells. The author analyses revealed that GPDM abundance and activity were significantly elevated in prostate cancer cells compared to normal cells. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production were increased in the tumor cells. These data demonstrate that GPDM is involved in maintaining a high rate of glycolysis and represents an important site of electron leakage leading to ROS production not only in prostate cancer cells but also in pancreatic cancer cells as given by our own results. This hypothesis is supported by our observation of an up-regulated expression of the mitochondrial precursor of glutathione reductase (GSHR) in IL-1-treated Colo357 cells. GSHR adds to the list of enzymes involved in oxidative stress and whose expression is up-regulated in different tumor cells (39). Moreover, oxidative stress has been shown to induce chromosomal instability in pancreatic cells derived from patients with chronic pancreatitis and pancreatic adenocarcinoma. These results might give further insight into the linkage of tumor-associated chronic inflammation and pancreatic cancer (40).

Three further proteins co-chromatographing with GSHR were identified as UTP-glucose-1-phosphate uridyltransferase 2 (UGPA), mitochondrial precursor of ATP synthase unit alpha (ATP6) and nicotinamide phosphoribosyltransferase (NAMPT). We assume that the intensity of the corresponding spot is caused by GSHR, NAMPT and ATP6 rather than by UGPA because an increase in this enzyme involved in glycogenolysis does not fit with metabolic stress regarding mobilization of energy reserves necessary for unlimited cell division. This assumption is supported by the finding of an up-regulated expression of ATP6 in liver metastases of colorectal cancer (41). Interestingly, Dowling et al observed a correlation between the increased abundance of ATP6 and the progression of cancer, since up-regulation of the enzyme contributed to the enhanced invasive potential of human breast cancer cells leading to a more aggressive phenotype (42).

All of the proteins mentioned before are more likely markers of the highly proliferative status of the tumor cells and do not provide the basis for new therapeutic concepts in cancer treatment, but two further proteins identified by our proteomic approach might be considered as putative target molecules for this challenging objective: these molecules are NAMPT and prostaglandin H₂ synthase 2 (PGHS-2). NAMPT is also known as visfatin or pre-B cell colony enhancing factor (PBEF). To our knowledge this report is the first one describing an IL-1-induced increase in the expression of NAMPT in a tumor model for human pancreatic cancer. We were able to demonstrate an enhanced expression of NAMPT at both, the mRNA and the protein level. The expression rate was nearly doubled within the first 24 h of incubation with the cytokine and then remained unaffected. It is well established that an inflammatory stimulus is implicated in the up-regulation of the NAMPT gene expression mediated by the transcription factors NF-κB and AP-1 (43).

Over-expression of NAMPT also fits into the picture of fast dividing tumor cells. It is the main enzyme for the regeneration of nicotinamide-D-ribonucleotide by transferring nicotinamide to 5'-phospho-α-D-ribose 1-diphosphate (44). Recently, NAMPT was described as visfatin belonging to the group of
adipocytokines. These proteins are mainly adipocyte-derived cytokines affecting immune and inflammatory functions. Moschen et al demonstrated an activation of human leukocytes by visfatin resulting in the production of pro-inflammatory mediators including IL-1, TNF-α, and IL-6 (45). From these observations the authors postulated that visfatin can be considered as a new pro-inflammatory adipocytokine.

The over-expression of NAMPT found in Colo357 supports the idea of an association of chronic inflammation with the development of pancreatic malignancy. Moreover, Van der Veer et al identified a relationship between aging of human vascular smooth muscle cells (SMCs) and visfatin (46). Replicative senescence of SMCs was preceded by a marked decline in the expression and activity of NAMPT. In contrast, introduction of the NAMPT gene into aging human SMCs delayed senescence and substantially lengthened cell lifespan, together with enhanced resistance to oxidative stress. NAMPT over-expression also reduced an age-related increase in p53 expression and increased the rate of p53 degradation. This feature of NAMPT may raise the tumorigenicity of cells bearing higher amounts of this enzyme like Colo357. An up-regulated expression of NAMPT was also described for primary colorectal cancer and breast cancer (47,48). Since Folgueira et al detected a higher resistance of NAMPT over-expressing tumor cells to chemotherapy (47), we suggest that IL-1-induced NAMPT over-expression observed in Colo357 might also contribute to the chemoresistance of pancreatic carcinoma. It has been shown previously that NAMPT mediates the stabilization of chromatin by poly-ADP-riboseylation resulting in a higher resistance to DNA-damaging substances not only in healthy but also in cancer cells (49). In this context inhibition of NAMPT appears to represent a striking tool in anti-tumor therapies. At present two pharmacological inhibitors are under investigation: FK866 and CHS-828 (50). In clinical studies with patients harboring different highly advanced malignancies resistant to common therapies the pharmacokinetics and the action of the inhibitors showed large variations among patients. There was no regression of tumor mass at all but tumor progression was inhibited in response to the inhibitors in some cases (51,52).

In four of nine up-regulated spots identified by our proteome analysis we found IL-1-dependent induction of PGHS-2 in Colo357. An enhanced expression of the enzyme has been reported in different tumor entities besides pancreatic carcinoma (53,54). In Colo357 we could demonstrate an elevated PGHS-2 synthesis at both the mRNA and the protein level induced by IL-1. The amount of the enzyme-specific mRNA reached a plateau after 24 h of IL-1 treatment and declined thereafter. This indicates the involvement of some products of the enzyme in regulating mRNA expression. In general, PGHS-2 is an inducible form of cyclooxygenases. Cyclooxygenases catalyze the production of prostaglandin H2 (PGH2), which is the basic compound for a great panel of different prostanooids (55). Because of the variety of mediators including IL-1, TNF-α, and IL-6 (45). From these observations the authors postulated that visfatin can be considered as a new pro-inflammatory adipocytokine.

The over-expression of NAMPT found in Colo357 supports the idea of an association of chronic inflammation with the development of pancreatic malignancy. Moreover, Van der Veer et al identified a relationship between aging of human vascular smooth muscle cells (SMCs) and visfatin (46). Replicative senescence of SMCs was preceded by a marked decline in the expression and activity of NAMPT. In contrast, introduction of the NAMPT gene into aging human SMCs delayed senescence and substantially lengthened cell lifespan, together with enhanced resistance to oxidative stress. NAMPT over-expression also reduced an age-related increase in p53 expression and increased the rate of p53 degradation. This feature of NAMPT may raise the tumorigenicity of cells bearing higher amounts of this enzyme like Colo357. An up-regulated expression of NAMPT was also described for primary colorectal cancer and breast cancer (47,48). Since Folgueira et al detected a higher resistance of NAMPT over-expressing tumor cells to chemotherapy (47), we suggest that IL-1-induced NAMPT over-expression observed in Colo357 might also contribute to the chemoresistance of pancreatic carcinoma. It has been shown previously that NAMPT mediates the stabilization of chromatin by poly-ADP-riboseylation resulting in a higher resistance to DNA-damaging substances not only in healthy but also in cancer cells (49). In this context inhibition of NAMPT appears to represent a striking tool in anti-tumor therapies. At present two pharmacological inhibitors are under investigation: FK866 and CHS-828 (50). In clinical studies with patients harboring different highly advanced malignancies resistant to common therapies the pharmacokinetics and the action of the inhibitors showed large variations among patients. There was no regression of tumor mass at all but tumor progression was inhibited in response to the inhibitors in some cases (51,52).

In four of nine up-regulated spots identified by our proteome analysis we found IL-1-dependent induction of PGHS-2 in Colo357. An enhanced expression of the enzyme has been reported in different tumor entities besides pancreatic carcinoma (53,54). In Colo357 we could demonstrate an elevated PGHS-2 synthesis at both the mRNA and the protein level induced by IL-1. The amount of the enzyme-specific mRNA reached a plateau after 24 h of IL-1 treatment and decreased thereafter. This indicates the involvement of some products of the enzyme in regulating mRNA expression. In general, PGHS-2 is an inducible form of cyclooxygenases. Cyclooxygenases catalyze the production of prostaglandin H2 (PGH2), which is the basic compound for a great panel of different prostanooids (55). Because of the variety of PGHS-2 products the characteristic expression profile of its corresponding mRNA might be involved in inhibiting the flushing of the cells and their microenvironment by mediators of inflammation and pain. PGHS-2 gene expression is regulated at the levels of mRNA stability and translation efficiency governed by multiple regulatory elements located in its 3'-untranslated region. Specific microRNA, RNA-binding proteins as well as alternative polyadenylation affect PGHS-2 mRNA stabilization thus regulating gene expression (56). Under normal conditions, PGHS-2 mRNA is rapidly degraded in processing bodies (57). These P bodies are conserved structures present in a great variety of eukaryotic cells and have been found as playing a crucial role in mRNA decay and storage (58). Our own results are in good agreement with these findings because we observed a rapid decay of the IL-1-induced PGHS-2 mRNA expression after reaching a maximum. Consequently, PGHS-2 protein amount in Colo357 peaked with a delay of 24 h and declined subsequently. The association between carcinogenesis and elevated levels of PGE2, one of the secondary products of PGH2, is well established in colorectal adenoma in familial adenomatosis polyposis patients. The resulting ratios were correlated with the size of the adenoma suggesting a critical role of prostanoids in tumor progress (59). Moreover, Fukuda et al demonstrated that PGE2 exposure induced the expression of vascular endothelial growth factor (VEGF) mRNA in human colon carcinoma cells (60). In a breast cancer study the expression pattern of PGHS-2 was found as being tightly correlated with lung-metastatic activity in the tumor patients (61). Gupta et al could show that the tumor-specific expression of epidermal growth factor receptor ligand epiregulin, PGHS-2, and matrix metalloproteinases 1 and 2 collectively facilitate the assembly of new tumor blood vessels and the release of tumor cells into the circulation (62). Taken together, these results emphasize PGE2 as being one of the most important mediators of PGHS-2-associated tumor invasiveness. Okami et al demonstrated the effectiveness of the PGHS-2-specific inhibitor JTE-522 in reducing the invasive potential of pancreatic cancer (63). Based on these findings several phase II clinical trials on the treatment of patients with advanced pancreatic carcinoma had been initiated using selective PGHS-2 inhibitors in combination with certain cytostatics. From these studies it became obvious that PGHS-2 inhibitors alone may not be sufficient to sensitize pancreatic cancer to the effects of conventional cytotoxic therapy (64,65).

On the other hand, selective PGHS-2 inhibitors have come under scrutiny because of reports suggesting an increased cardiovascular risk associated with their use (66). The hitherto used high therapeutic concentrations of these drugs may contribute to a prothrombotic state in patients with higher risk for serious cardiovascular events.

Taken together, all these results clearly demonstrate that there is a strong medical need for the development of new concepts how such deadly biological activities working in pancreatic cancer may be therapeutically targeted with combinations of low-dose chemopreventive drugs. In this context and based on the presented work for Colo357 cells, inhibitors of NAMPT and PGHS-2 are promising candidates for a combinatory blockade of two critical enzymes over-expressed in pancreatic cancer cells. It has been shown previously that the PGHS-2-specific inhibitor celecoxib and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) act synergistically in inhibiting cellular growth and inducing apoptosis in a model of prostate carcinoma (67).

On the basis of the presented work we propose a combinatorial administration of NAMPT and PGHS-2 inhibitors
as an adjuvant therapy in pancreatic cancer. It has to be seen primarily as an attempt to supplement the hitherto existing conventional methods to fight the poor outcome of the disease. Moreover, the aim is to improve the existing therapeutic networks. These novel approaches might disturb the concert between inflammation and malignant transformation of pancreatic cells leading to a better prognosis and prolonged overall survival of high-risk patients with pancreatic neoplasia.

Acknowledgements

We thank Professor Gabriele Multhoff (Abteilung für Radiotherapie und Radioonkologie, Klinikum rechts der Isar, Technische Universität München, Germany) for the kind gift of Colo357. We also thank Drs Christian Scharf and Manuela Gesell Salazar (Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Germany) for their help in mass spectrometric analyses.

References

