Involvement of RQCD1 overexpression, a novel cancer-testis antigen, in the Akt pathway in breast cancer cells

MASAHIKO AJIRO1, TOYOMASA KATAGIRI1,2, KOJI UEDA3, HIDEWAKI NAKAGAWA3, CHIKAKO FUKUKAWA1, MENG-LAY LIN1, JAE-HYUN PARK1, TOSHIHIKO NISHIDATE1, YATARO DAIGO1 and YUSUKE NAKAMURA1

1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo; 2Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima; 3Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan

Received May 25, 2009; Accepted July 2, 2009

DOI: 10.3892/ijo_00000379

Abstract. We here report identification and characterization of Required for Cell Differentiation 1 homolog (RQCD1) as a potential therapeutic target for breast cancer. Gene-expression profiling analysis of breast cancer cells, semi-quantitative RT-PCR, Northern blotting and Western blotting confirmed RQCD1 to be frequently up-regulated in breast cancer specimens and breast cancer cell lines. On the other hand, its expression was very weak or hardly detectable in normal human tissues except testis, indicating this molecule to be a novel cancer-testis antigen. Treatment of breast cancer cell lines with siRNA targeting RQCD1 drastically suppressed cell proliferation. Concordantly, introduction of exogenous RQCD1 into HEK293 cells significantly enhanced cell growth, implying RQCD1 to have an oncogenic activity. Co-immunoprecipitation experiments and immunocytochemical staining revealed an interaction of RQCD1 protein with Grb10 interacting GYF protein 1 (GIGYF1) and 2 (GIGYF2) proteins, involved in regulation of Akt activation, in breast cancer cells. Interestingly, knockdown of either of RQCD1, GIGYF1 or GIGYF2 resulted in significant reduction of the phosphorylation of Akt at Ser 473 in breast cancer cell lines. Our findings suggest that RQCD1 is a potential molecular target for treatment of breast cancer.

Introduction

Breast cancer is the most frequent cancer among women worldwide, ranking as first in incidence and fifth in mortality by global statistics in 2002. Although the incidence of breast cancer has been significantly increasing, its mortality rate has been reduced and quality of life (QOL) of the patients has been significantly improved in most developed countries probably due to widespread mammographic screening as well as development of molecular targeting drugs like tamoxifen, aromatase inhibitor and trastuzumab (1,2). However, benefits of such molecular targeting drugs are still very limited to the patients at an advanced stage or those with a triple-negative breast cancer. In addition, we often observe adverse reactions caused by these drugs; for instance, increase in the risk of endometrial cancer in patients having long-term tamoxifen administration and that of severe cardiac toxicity with trastuzumab treatment as well as the risk of bone fracture due to osteoporosis in postmenopausal women with aromatase inhibitor prescription are recognized as adverse effects (3). Hence, to overcome such adverse effects and to further improve the patients’ QOL, development of novel molecular targeting drugs to provide better clinical management is essentially important.

Genome-wide gene expression profiling analyses by cDNA microarray technology was shown to be an effective approach for discovery of target molecules for various types of cancer (4,5). In an attempt to identify novel molecular targets in breast cancer, we previously performed genome-wide expression profiling analysis of breast cancer specimens by cDNA microarray (6), and identified a number of genes that play important roles in the growth of breast cancer cells (7-13). Such molecules are considered to be potential molecular targets for development of new therapeutic modalities against breast cancer.

We report the identification and characterization of RQCD1, which was significantly up-regulated in breast cancer cells. A homolog of this gene was identified as a regulator for cell differentiation in nitrogen-starved fission yeast (14) and mammalian RQCD1 was later indicated to function as a transcriptional cofactor that was involved in retinoic acid-induced differentiation of mouse teratocarcinoma cell line F9 (15). However, its role in human carcinogenesis has not been described so far.

Here we report involvement of RQCD1 overexpression in breast cancer cells and its interaction with GIGYF1 and
GIGYF2 proteins, which were previously reported to have critical roles in phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway (16). Our findings suggest that RQCD1 might be a potential molecular target for the development of anticancer drugs to breast cancer.

**Materials and methods**

*Bread cancer cell lines and clinical samples. Human breast cancer cell lines, HCC-1937, BT-549, MCF-7, BSY-1, MDA-MB-435S, SKBR-3, T-47D, MDA-MB-231 and YMB-1, human normal ductal epithelial cell MCF10A, human embryonic kidney cell lines, HEK293 and HEK293T, were purchased from American Type Culture Collection (ATCC; Rockville, MD, USA). They were cultured under the recommendations of their respective distributors. HBC-4 and HBC-5 cell lines were kindly provided by Dr. Takao Yamori of Department of Molecular Pharmacology, Cancer Center Nagoya, Japan. The study was approved by individual institutional Ethics Committees.*

*Breast cancer Northern blot membranes were hybridized with [32P]-dCTP labeled cDNA probe for RQCD1, prepared by RT-PCR (see below) with megaprime DNA labeling system (GE Healthcare). Prehybridization, hybridization and washing were performed as described previously (7). The blots were autoradiographed with intensifying screens at -80°C for 14 days. Specific probe for RQCD1 (283 bp) was prepared by RT-PCR using the primer set of 5'-GGACTCGAGTGCTCTCTGTC-3' and 5'-GATCACTTCTTCTTCAGGCT TGC-3'.*

**Northern blotting.** Breast cancer Northern blot membranes were prepared as described previously (7). Human Multiple-Tissue Northern blot membrane (Takara Clontech) and breast cancer Northern blot membranes were hybridized with [α-32P]-dCTP labeled cDNA probe for RQCD1, prepared by RT-PCR (see below) with megaprime DNA labeling system (GE Healthcare). Prehybridization, hybridization and washing were performed as described previously (17). The blots were autoradiographed with intensifying screens at -80°C for 14 days. Specific probe for RQCD1 (283 bp) was prepared by RT-PCR using the primer set of 5'-GGACTCGAGTGCTCTCTGTC-3' and 5'-GATCACTTCTTCTTCAGGCT TGC-3'.

**Construction of expression vectors.** To expression vector constructs for RQCD1, GIGYF1 and GIGYF2, each entire coding sequence was amplified by PCR using KOD-Plus DNA polymerase (Toyobo, Osaka, Japan). Primer sets were as follows; 5'-GGATCCATGCGCCGCACCGCAGGCGG-3' and 5'-GGACTCGAGCTGCTGAGGCCGACGCG-3' for RQCD1, 5'-GGATCCATGCGCCGCACCGCAGGCGG-3' and 5'-GGACTCGAGCTGCTGAGGCCGACGCG-3' for RQCD1, 5'-GGATCCATGCGCCGCACCGCAGGCGG-3' and 5'-GGACTCGAGCTGCTGAGGCCGACGCG-3'.

**Preparation of anti-RQCD1 polyclonal antibody.** Plasmid designed to express the full-length RQCD1 with glutathione S-transferase (GST)-tag at the N-terminus was constructed using pGEX-6P-1 vector (GE Healthcare). The recombinant RQCD1 protein was expressed in BL21-CodonPlus-RIL Escherichia coli strain (Stratagene, La Jolla, CA, USA) and purified using glutathione Sepharose 4B (Amersham Pharmacia Biotech, Piscataway, NJ, USA). The recombinant RQCD1 was affinity purified with glutathione Sepharose 4B and purified with glutathione Sepharose 4B. The purity of the recombinant RQCD1 was confirmed by Western blotting with anti-GST antibody.
Western blotting. To examine the expression of RQCD1 protein in breast cancer and normal tissues, we used Protein Medley (Takara Clontech) tissue lysates for human normal mammary gland, lung, heart, liver and kidney. Cultured breast cancer cells were harvested with lysis buffer containing 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% NP-40, 10% glycerol, 1% Phosphatase Inhibitor Cocktail Set II and 0.1% Protease Inhibitor Cocktail Set III (Calbiochem, San Diego, CA). SDS-PAGE and Western blotting were performed as described previously (7). Antibodies used in this study were as follows; anti-RQCD1 rabbit polyclonal antibody (0.6 μg/ml) for RQCD1, anti-β-actin mouse monoclonal antibody (Ac-15) (Sigma-Aldrich) (10 ng/ml) for ACTB, anti-Akt rabbit polyclonal antibody (9272) (Cell Signaling Technology, Danvers, MA, USA) (1:1,000 dilution) for Akt, anti-phospho Akt (Ser 473) (Roche, Basel, Switzerland) (20 ng/ml) for phospho Akt on Ser 473, anti-HA rat monoclonal antibody (3F10) (Sigma-Genosys, St Louis, MO, USA) targeting RQCD1 (#2) and GIGYF1 or GIGYF2, and anti-ß-actin mouse monoclonal antibody (Ac-15) (Sigma-Aldrich) (10 ng/ml) for ACTB, anti-RQCD1 rabbit polyclonal antibody (6 μg/ml) with 5% RQCD1 in breast cancer cells, the cells were incubated with the primary antibody reaction. For the detection of endogenous RQCD1 in breast cancer cells, the cells were incubated with phosphate-buffered saline (PBS) (-), fixed with 4% paraformaldehyde solution at 4˚C for 15 min. For Akt activation analysis, we used each of the oligo-duplex siRNAs (Sigma-Genosys, St Louis, MO, USA) following fixation by 4% paraformaldehyde for 15 min. For Akt activation analysis, we used each of the oligo-duplex siRNAs (Sigma-Genosys, St Louis, MO, USA) targeting RQCD1 (#1), GIGYF1 or GIGYF2, and also siRNA for EGFP as a control. Seventy-two hours after transfection of siRNAs, we evaluated Akt activity by Western blotting with anti-phospho Akt mouse monoclonal antibody which can recognize the phosphorylation of Akt at Ser 473 (#4051; Cell Signaling Technology). To evaluate the effects on the level of Akt phosphorylation after knockdown of RQCD1, GIGYF1 or GIGYF2, the band intensities of Western blotting with anti-phospho-Akt and anti-Akt-antibodies were quantified by using Image J analysis software (http://rsb.info.nih.gov/ij) (19). The siRNA target sequences were as follows: 5'-GATCTTACAGTGAGTATTCAAT-3' for RQCD1 (#1), 5'-GATCTTACAGTGAGTATTCAAT-3' for RQCD1 (#2), 5'-CTTCCAGAGGGCTAGACATG-3' for GIGYF1, 5'-AAAGATACCTTCGACAGT-3' for GIGYF2, and 5'-GCAGCAAGCTTCTCCAAG-3' for EGFP.

Preparation of RQCD1 stably-expressing cell lines. HEK293 cells were transfected with pCAGGS-HA-RQCD1 plasmid vector or mock plasmid vector using FuGENE 6 transfection reagent (Roche). Twenty-four hours after transfection, cells were incubated in culture medium with 0.5 mg/ml of Genetin (Invitrogen) for 14 days. Then, more than 20 individual colonies were isolated, and then each colony was evaluated for its monoclonal expression of RQCD1 protein by immunocytochemical staining and Western blotting with anti-HA antibody. Finally, we established three independent clones and designated them as follows: HEK293-RQCD1-1, -2 and -3 (stable-1, -2 and -3), and HEK293-Mock-1, -2 and -3 (mock-1, -2 and -3). For cell proliferation assay, mock- and RQCD1-stable cell lines were seeded to collagen type 1 coated 6-well microplate (Asahi glass Co., Tokyo, Japan) (0.4x10^6 cells/well), and cell growth was evaluated with Cell Counting kit-8 (Dojindo, Kumamoto, Japan). Moreover, after geneticine treatment for 9 days, we performed cell proliferation assay with Cell Counting kit-8 (Dojindo, Kumamoto, Japan). After geneticine treatment for 9 days, we performed colony formation assay by staining colonies with Giemsa staining solution (Merck, Whitehouse Station, NJ, USA) following fixation by 4% paraformaldehyde for 15 min. For Akt activation analysis, we used each of the oligo-duplex siRNAs (Sigma-Genosys, St Louis, MO, USA) targeting RQCD1 (#1), GIGYF1 or GIGYF2, and also siRNA for EGFP as a control. Seventy-two hours after transfection of siRNAs, we evaluated Akt activity by Western blotting with anti-phospho Akt mouse monoclonal antibody which can recognize the phosphorylation of Akt at Ser 473 (#4051; Cell Signaling Technology).

RNA interference assay. We generated the shRNA expression vectors against RQCD1 by cloning of double-stranded oligonucleotides into the BbsI site in the psiU6BX3.0 vector as describe previously (18). Cells (1.0x10^6) of BT-549 and HBC-4 cell lines were seeded in 10-cm plates. Twenty-four hours after seeding, the cells were transfected with each of shRNA expression vectors targeting RQCD1 (#1 and #2), or psiU6BX3.0 mock vector (without any insert) using FuGENE 6 transfection reagent (Roche) according to the manufacturer’s instructions. Twenty-four hours after transfection, the cells were re-seeded to 6-Well Clear TC-Treated Microplate (Corning, Lowell, MA, USA) (0.7x10^5 cells/well) for cell proliferation and colony formation assays, and to 10-cm plates (3.5x10^5 cells/plate) for RT-PCR and Western blotting with culture medium containing 0.5 mg/ml of genetin (Invitrogen). After geneticine treatment for 7 days, the knockdown effect of shRNA was examined by semi-quantitative RT-PCR and Western blotting analyses as described above. After geneticine treatment for 8 days, we performed cell proliferation assay with Cell Counting kit-8 (Dojindo, Kumamoto, Japan). Moreover, after geneticine treatment for 9 days, we performed colony formation assay by staining colonies with Giemsa staining solution (Merck, Whitehouse Station, NJ, USA) following fixation by 4% paraformaldehyde for 15 min. For Akt activation analysis, we used each of the oligo-duplex siRNAs (Sigma-Genosys, St Louis, MO, USA) targeting RQCD1 (#1), GIGYF1 or GIGYF2, and also siRNA for EGFP as a control. Seventy-two hours after transfection of siRNAs, we evaluated Akt activity by Western blotting with anti-phospho Akt mouse monoclonal antibody which can recognize the phosphorylation of Akt at Ser 473 (#4051; Cell Signaling Technology). To evaluate the effects on the level of Akt phosphorylation after knockdown of RQCD1, GIGYF1 or GIGYF2, the band intensities of Western blotting with anti-phospho-Akt and anti-Akt-antibodies were quantified by using Image J analysis software (http://rsb.info.nih.gov/ij) (19). The siRNA target sequences were as follows: 5'-GATCTTACAGTGAGTATTCAAT-3' for RQCD1 (#1), 5'-GATCTTACAGTGAGTATTCAAT-3' for RQCD1 (#2), 5'-CTTCCAGAGGGCTAGACATG-3' for GIGYF1, 5'-AAAGATACCTTCGACAGT-3' for GIGYF2, and 5'-GCAGCAAGCTTCTCCAAG-3' for EGFP.

Preparation of RQCD1 stably-expressing cell lines. HEK293 cells were transfected with pCAGGS-HA-RQCD1 plasmid vector or mock plasmid vector using FuGENE 6 transfection reagent (Roche). Twenty-four hours after transfection, cells were incubated in culture medium with 0.5 mg/ml of Genetin (Invitrogen) for 14 days. Then, more than 20 individual colonies were isolated, and then each colony was evaluated for its monoclonal expression of RQCD1 protein by immunocytochemical staining and Western blotting with anti-HA antibody. Finally, we established three independent clones and designated them as follows: HEK293-RQCD1-1, -2 and -3 (stable-1, -2 and -3), and HEK293-Mock-1, -2 and -3 (mock-1, -2 and -3). For cell proliferation assay, mock- and RQCD1-stable cell lines were seeded to collagen type 1 coated 6-well microplate (Asahi glass Co., Tokyo, Japan) (0.4x10^6 cells/well), and cell growth was evaluated with Cell Counting kit-8 (Dojindo) according to the manufacturer’s instructions. GST-pull down assay. HBC-4 was seeded at 1.0x10^6 cells in 10-cm plate. Twenty-four hours after seeding, the cells were harvested with 500 μl of ice-cold buffer containing 25 mM

RNA interference assay. We generated the shRNA expression vectors against RQCD1 by cloning of double-stranded oligonucleotides into the BbsI site in the psiU6BX3.0 vector as
Among dozens of up-regulated genes, we in this study focused on RQCD1, whose expression was frequently up-regulated (at least 3-fold more than normal ductal cells) in a solid-tubular type of breast carcinoma. We confirmed its overexpression in 4 in 12 clinical solid-tubular cases by comparison with normal breast ductal cells or with whole mammary gland by semiquantitative RT-PCR (Fig. 1A). Subsequent Northern blot analysis using a RQCD1 cDNA fragment revealed overexpression of its transcript (approximately 3.5 kb long) in breast cancer cell lines, while RQCD1 expression was very weak or hardly detectable in normal human organs except the testis (Fig. 1B) as concordant to the results of cDNA microarray analysis. Since the assembled cDNA sequence of RQCD1 (accession no. NM_005444; 900 bp) in the NCBI database was smaller than the size of the transcript indicated by Northern blot analysis, we performed the exon-connection, and 5’ and 3’ RACE experiments. We finally obtained the full-length cDNA sequences of human RQCD1 consisting of 3,284 nucleotides (Genbank accession: AB500892) encoding a protein of 299 amino acids. The RQCD1 gene consists of eight exons and spans an approximately 45.4-kb genomic region on chromosomal band 2q35.

To investigate the expression of RQCD1 protein in breast cancer cells, we generated a polyclonal antibody against full-length RQCD1 protein, and performed Western blotting analysis using the whole cell lysate from eight breast cancer cell lines as well as normal human tissues including mammary gland, lung, heart, liver and kidney. We detected a high level of RQCD1 protein in all the breast cancer cell lines examined, but its expression was hardly detectable in any of normal human tissues except the testis (Fig. 1C). Furthermore, we examined the subcellular localization of endogenous RQCD1 protein in the breast cancer cell line BT-549 by immunocytochemical staining analysis using the purified anti-RQCD1 polyclonal antibody. It was observed diffusely in both cytoplasm and nucleus of breast cancer cells (Fig. 1D).

Effect of RQCD1 on cell growth. To examine the functional role of RQCD1 in breast cancer cell growth, we knocked down the expression of endogenous RQCD1 in the breast cancer cell lines BT-549 and HBC-4, which showed high RQCD1 expression at both transcriptional and protein levels (Fig. 1), by means of small hairpin-RNA (shRNA) expression vector system. Semiquantitative RT-PCR and Western blot analyses indicated that RQCD1-specific shRNAs (shRNA#1 and shRNA#2) significantly suppressed RQCD1 expression while no change was observed in the MOCK-transfected cells (Fig. 2A). We then performed cell-proliferation and colony formation assays, and found that introduction of shRNA#1...
and shRNA#2 constructs significantly suppressed growth of both BT-549 and HBC-4 cells (BT-549: shRNA#1, P=0.004 and shRNA#2, P=0.002; HBC-4: shRNA#1, P=0.002 and shRNA#2, P=0.002; Student’s t-test), in concordance with the results of knockdown effect of the transcript (Fig. 2A). To further confirm the growth-promoting effect of RQCD1, we established three independent HEK293 derivative cells that stably expressed exogenous RQCD1 at high level (stable-1, -2 and -3) compared to parental HEK293 (Fig. 2B). Subsequent cell proliferation assay revealed that the three RQCD1-stable cells (stable-1, -2 and -3) grew significantly much faster than those transfected with mock plasmid (mock-1, -2 and -3; Fig. 2B right panel), indicating an oncogenic role of RQCD1 overexpression.

**Identification of molecules interacting with RQCD1.** To further investigate its biological function, we searched for a protein(s) interacting with RQCD1 protein in breast cancer cells by GST-pull down assay using the N-terminally GST-fused full-length RQCD1 recombinant protein (GST-RQCD1) and mass spectrometric analysis (see Materials and methods). Comparison of silver staining patterns of SDS-PAGE gels containing the pulled-down proteins identified two proteins, approximately at 140 and 160 kDa specifically in the lane corresponding to proteins pulled-down with GST-RQCD1 protein (data not shown). Mass spectrometric analysis indicated these 140 and 160 kDa proteins to be Grb10-interacting GYF protein 1 (GIGYF1) and 2 (GIGYF2), respectively, which were previously indicated their involvement in the PI3K/Akt signaling pathway (16). Subsequently, to confirm the interaction between RQCD1 and GIGYF1/GIGYF2, we performed co-immunoprecipitation assay (see Materials and methods). Flag-tagged RQCD1 (Flag-RQCD1), and HA-tagged GIGYF1 or GIGYF2 (HA-GIGYF1, HA-GIGYF2) constructs were co-transfected into HEK-293T cells, and the cell lysates were immunoprecipitated with anti-
Flag antibody. Immunoblotting of the precipitates with anti-HA antibodies suggested co-immunoprecipitation of Flag-RQCD1 with HA-GIGYF1 or HA-GIGYF2. Conversely, we also carried out immunoprecipitation with anti-HA antibody and subsequent immunoblotting of precipitates with anti-Flag antibody, and confirmed their co-immunoprecipitation (Fig. 3A). Then, we examined the transcriptional levels of GIGYF1 and GIGYF2 in breast cancer cell lines by semi-quantitative RT-PCR, and found that GIGYF1 and GIGYF2 were also up-regulated in all breast cancer cell lines examined, compared with normal mammary gland (Fig. 3B). We further examined the subcellular localization of these proteins in breast cancer cells, BT-549, by immunocytochemical staining, and detected HA-GIGYF1 and HA-GIGYF2 proteins in cytoplasm, and partially colocalized with endogenous RQCD1.

Involvement of RQCD1 in Akt-signaling pathway. Since overexpression of GIGYF1 and GIGYF2 was reported to activate PI3K/Akt signaling pathway in mouse embryonic fibroblasts that were transfected with the IGF-I receptor (16), we examined whether RQCD1, GIGYF1 and GIGYF2 proteins in cytoplasm, and partially colocalized with endogenous RQCD1.
Ser 473 in its carboxyl-terminal hydrophobic motif is known to be a representative marker for activation of Akt (20-22). Therefore, we first performed Western blotting with anti-Akt and anti-phospho-Akt (Ser 473) antibodies to examine the Akt activity status in breast cancer cells, BT-549, HBC-5 and HCC-1937, which showed a high level of RQCD1 expression (Fig. 1C). The results showed that the high level of phosphorylation of Akt at Ser 473 was clearly observed in all breast cancer cells even in the absence of the serum stimulation, while its phosphorylation was abolished in normal ductal epithelial cell-derived MCF-10A in the serum-depletion condition (Fig. 4A), indicating that Akt is constitutively activated in these breast cancer cells. We then investigated the knockdown effects of \( \text{RQCD1} \), \( \text{GIGYF1} \) or \( \text{GIGYF2} \) expression by siRNA treatments on the Akt phosphorylation level, and found that treatment of each siRNA against either \( \text{RQCD1} \), \( \text{GIGYF1} \) or \( \text{GIGYF2} \) into BT-549 cells caused the significant reduction of phosphorylation level of Akt without alteration of total Akt protein level (Fig 4B and D). We also observed a similar effect on the Akt activity by the RQCD1-siRNA treatment in the other breast cancer cell lines, HBC-5 and HCC-1937 (Fig. 4C and D).

### Discussion

Molecular targeting drugs for breast cancer therapy have contributed to reduction in motility rate and improvement in QOL of patients in the last two decades (1,2). However, the proportion of patients showing good response to presently available treatments is still limited particularly for the patients at advanced stages or those with triple-negative breast cancer (23). Toward identification of molecular targets for drug development, we had analyzed the detailed gene expression profiles of 81 clinical breast cancer cells (6) and 29 normal human tissues (24) for selecting genes that were up-regulated specifically in breast cancer cells in combination with experiments screening for knock down effects by means of the RNA interference system. On the basis of this approach, we found RQCD1 to be up-regulated frequently in clinical breast cancer samples as well as breast cancer cell lines, while its expression was very low in normal human tissues except the testis. These results indicated RQCD1 as a novel cancer-testis antigen. Furthermore, we demonstrated that knock-down of RQCD1 expression resulted in significant growth suppression of breast cancer cells and that introduction of
RQCD1 into HEK293 cells significantly promoted the cell growth, implying that RQCD1 could serve as a valuable target for development of anticancer agents or cancer peptide vaccine for breast cancer.

RQCD1, a protein evolutionarily conserved among eukaryotes, was first identified as a crucial factor for regulation of differentiation in nitrogen-starved fission yeast; yeast cells lacking of RQCD1 were reported to be sterile when they were cultured in the nitrogen-starvation condition (14). Furthermore, the murine homolog of RQCD1 was reported as a transcriptional cofactor that mediated retinoic acid-induced differentiation and also to be an erythropoietin-responsive gene potentially involved in development of hematopoietic cell (15,25). However, since its biological roles in tumorigenesis have not been investigated, we searched for interacting proteins of RQCD1 and identified the interaction of RQCD1 with both GIGYF1 and GIGYF2 proteins that were reported to be involved in activation of the PI3K/Akt signaling pathway (16). We further confirmed that knockdown of RQCD1, GIGYF1 or GIGYF2 by siRNA treatment resulted in reduction of the phosphorylation level of Akt at Ser 473, that is known to be a marker of its activation (20-22), in breast cancer cells in which these genes was overexpressed, indicating that RQCD1 might function in the constitutive activation of Akt in breast cancer cells through the interaction with GIGYF1 and GIGYF2.

Our findings suggest that RQCD1 is overexpressed specifically in breast cancer cells, and plays an important role in cell growth of breast cancer. In addition, this gene product might be involved in the regulation of constitutive activation of Akt through physiological interaction with GIGYF1 and GIGYF2 in several cellular contexts. Consequently, our findings in this study not only contribute to understanding of mammmary carcinogenesis, but also provide RQCD1 as a potential candidate for development of molecular target drug against breast cancer.

Acknowledgements
We greatly thank Ms. Kyoko Kijima, Yoshiko Fujisawa and Kie Naito for technical support.

References


