Abstract. Human papilloma virus (HPV) has been recently proposed to be implicated in the development of head and neck squamous cell carcinoma (HNSCC) in patients without cancer risk. We examined the expression of HPV16/18 E6/E7 in 71 cases of HNSCCs and investigated abnormalities of the p53 gene in 62 of these 71 cases. Expression of HPV16 E6/E7 was observed in 11 of the 71 cases (15.5%), while expression of HPV18 E6/E7 was not observed in any of the cases. Most of the HPV16 E6/E7-positive cases were histopathologically characterized by their verrucous or papillary structure and koilocytosis of the adjacent mucosa. There was no clear relationship between expression of HPV16 E6/E7 and tumor stage, prognosis or the positive rate of p53 abnormality. These results suggest that approximately 15% of HNSCCs are caused by HPV16 infection and the subsequent constitutive expression of E6 and E7, and that some HPV-initiated tumors lose their original characteristics during tumor progression.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy and is a major cause of cancer morbidity and mortality worldwide (1). The overall survival rate has remained unchanged in recent years, despite extensive research on the biological and molecular aspects of HNSCC (2-9). Although most HNSCC is etiologically linked with smoking and/or alcohol drinking or betel chewing, clearly there are patients who develop HNSCC despite the absence of exposure to these agents, and in the absence of any obvious predisposing genetic defect (10). Human papilloma virus (HPV) has recently been proposed to be implicated in the development of HNSCC in patients without elevated cancer risk, i.e., those with no exposure to smoking, alcohol drinking or betel chewing (10,11).

The genome of HPV is a circular double-stranded DNA molecule of approximately 8000 base pairs, and more than 100 HPV genotypes have been described (12). HPVs are classified into low-risk or high-risk types according to their presence in malignant lesions of the uterine cervix. The high-risk types, 16 and 18, are associated with more than 90% of uterine cervical cancers (13-15). Of these, HPV16 accounts for approximately half of all cervical cancers while HPV18 is involved in another 10 to 20% (12). The HPV genome contains several genes, including E1, E2, E3, E4, E5, E6, E7, L1 and L2 (16). Of these, E6 and E7 are known to be important in inducing malignant transformation of squamous cells. E6 binds to the tumor suppressor gene product, p53, and acts as a ubiquitin ligase for p53 thereby inactivating p53 function (17). E7 binds to the tumor suppressor gene product, RB, and inactivates RB function (17,18). After infection of squamous cells by high-risk HPV, the virus will act in one of two different ways. When the HPV genome exists as an episome, expression of E6 and E7 is very limited, and thus only induction of transient proliferation, not malignant transformation of the cells, is possible (12,16). However, when the HPV genome is cleaved in the E2 region, the linealized HPV genome is occasionally integrated in the chromosome of the cells (12,16). Under these circumstances the transcription-suppressor function of the E2 protein on the E6 and E7 genes is disrupted, resulting in up-regulation of E6 and E7 expression. Constitutive expression of E6 and E7 induces immortalization and proliferation of cells and finally malignant transformation of the cells (12,16). The presence of the HPV genome in HNSCCs has been reported to range from 0 to 100%; the rate depends on the area, the ethnicity of the patient, the type of specimen, and the detection method (10,19). The presence of polymerase chain reaction (PCR)-detectable HPV genome seems not to be synonymous with an HPV-related etiology, and causes an over-estimation of HPV-related carcinogenesis of oral mucosa as described above. Recent reports (20,21) have indicated that HPV E6, E7...
transcripts are less commonly found in HNSCC than the DNA of the respective HPV type.

The p53 tumor suppressor gene is reported to be mutated in more than 60% of HNSCCs, and 20-30% of the cases without mutation show an abnormality in the p53 signaling pathway, such as MDM2, ING1 or ARF1 (7). Balz et al (22) reported that p53 mutations are absent in human HPV-positive HNSCCs. Cheng et al (23) reported that HPV16/18 E6 expression correlated inversely with p53 expression, although p53 expression was not associated with mutant p53 in lung tumors. Thus, an association between p53 gene mutation and HPV16/18 infection or expression of E6 and E7 remains controversial.

Based on the data from a clinical study and the basic study concerning HPV and p53 in HNSCC, we conducted the present experiment to clarify the role of HPV16/18 E6/E7 in the carcinogenesis of HNSCC, and to examine whether the expression of HPV16/18 E6/E7 in HNSCC is related to clinicopathological characteristics.

Materials and methods

Patients and histopathological diagnosis. Seventy-one patients with HNSCC (men, 44; women, 27) participated in this study. Each patient underwent surgical resection of their tumor at our hospital between 1996 and 2005. The patients did not receive any previous radiation therapy or chemotherapy. The primary sites of the HNSCCs are shown in Table I. More than half of the tumors were taken from the tongue (37 cases), while 11 were from the upper gingiva, 8 from the lower gingiva, 5 from the mouth floor and buccal mucosa, 3 from the hard and soft palates, and 1 from the lower lip and maxillary sinus (Table I).

Tissue samples were formalin-fixed and paraffin-embedded, and sections (4-μm) were stained with hematoxylin and eosin for histopathological diagnosis. All tumors were diagnosed as squamous cell carcinoma or verrucous carcinoma.

Cell lines. HeLa and CaSki cells were derived from human cervical cancer cell lines, and these cells were maintained at 37˚C in Dulbecco’s modified Eagle’s medium (Nissui, Tokyo, Japan) and RPMI-1640 (Nissui), respectively, in a humidified atmosphere of 95% air and 5% CO2. Both media were supplemented with 10% fetal calf serum (Sigma, St. Louis, MO), 100 μg/ml of streptomycin, 100 units/ml of penicillin, and 0.25 μg/ml amphotericin B (Life Technologies, Inc., Gaithersburg, MD). CaSki cells have been reported to be positive for HPV16 (24), while HeLa cells have been reported to be positive for HPV18 (25). Both cell types were used as controls in subsequent PCR analysis.

RNA extraction. All 71 cancer tissues were snap-frozen and subjected to molecular analysis. Total RNA from the cell lines and the tissues was extracted using a modified acid-phenol-chloroform method with Isogen RNA extracting mixture (Nippon Gene, Toyama, Japan) according to the manufacturer’s recommendations. Tissue was resected from the central part of the tumors without necrosis, and half was used for RNA preparation and half for histopathological diagnosis. The samples were confirmed to contain active cancer cells with minimum contamination by normal tissue. RNA integrity was confirmed by visualizing intact 28S and 18S rRNAs on a formaldehyde denaturing agarose gel.

Reverse transcriptase-polymerase chain reaction (RT-PCR). The RNA from HeLa and CaSki cells and tissue specimens was reverse-transcribed by Moloney murine leukemia virus reverse transcriptase (Life Technologies, Inc.) at 42˚C for 60 min using a random primer (5 μm; Life Technologies, Inc.) in 20 μl of reaction mixture (26). Subsequently, 1 μl of the products was subjected to quantitative PCR amplification (TaqMan PCR) as described below.

Quantitative evaluation of the expression of HPV16/18 E6/E7. The primers and TaqMan-probe used are listed in Table II. The PCR mixture contained 1 μl of reverse transcription product, primers (200 nM each) and TaqMan probe (100 nM) in a final volume of 25 μl (26). Amplification and detection were performed with the ABI PRISM 7700 Sequence Detection System using the following profile: 94˚C for 3 min followed by 40 cycles at 94˚C for 1 min, 55˚C for 1.5 min, and 72˚C for 1 min, with a final extension at 72˚C for 4 min (26). The amount of each RT-PCR product was standardized against the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the internal control.

p53 immunohistochemical analysis. Immunohistochemical analysis was performed using an LSAB2 Kit (Dako Japan, Tokyo, Japan) with microwave accentuation. In brief, 4-μm sections were placed onto silane-coated slides (Muto Pure Chemicals, Tokyo, Japan), deparaffinized in xylene followed by sequential washes in graded ethanol solutions, and pretreated with 3% H2O2 in methanol for 20 min at room temperature to quench endogenous peroxidase activity. The sections were then placed in 10 mM citrate buffer (pH 6.0) and heated in a microwave oven (400 W) for 10 min to facilitate antigen retrieval. They were subsequently incubated with 1% bovine serum albumin in phosphate-buffered saline (PBS) for 20 min, then incubated with a polyclonal antibody against p53 protein (1:2,000; NCL-p53pCM1, Novocastra
Laboratories Ltd., Newcastle, UK). Biotinylated anti-rabbit immunoglobulin G was used as the secondary antibody. Following treatment with peroxidase-conjugated streptavidin, the sections were washed in cold PBS, allowed to react with 3,3'-diaminobenzidine tetrahydrochloride solution and counterstained with hematoxylin. As a positive control, sections of a colon cancer carrying a mutated p53 gene and strongly expressing the p53 protein in the nucleus, were used. Sections that were not exposed to the primary antibody formed the negative control (26).

Statistical analysis. Statistical analysis was carried out using the Stat View. The \(\chi^2 \) test, Fisher exact test (two-tailed) and the Mann-Whitney test were applied for statistical analysis.

Ethical standards. The Ethics Committee of Dokkyo University School of Medicine approved this study. All patients gave their informed consent prior to their inclusion in this study.

Results

Expression of HPV16/18 E6/E7. Expression of HPV16 E6/E7 was observed in 11 of 71 cases (15.5%) (Fig. 1). In all HPV16 E7-positive cases, the fluorescence was detected at 33 to 37 cycles of amplification. As expected, the HPV16 E7-positive cases were completely identical to the HPV16 E6-positive cases (data not shown). In all HPV16 E7-positive cases, the fluorescence was detected at 33 to 37 cycles of amplification (Fig. 1). On the other hand, expression of HPV18 E6/E7 was not observed in any of the cases (data not shown).

Clinicopathological characteristics of the HPV16-positive cases. We examined the relationship between HPV16 E6/E7 expression and the primary site of the tumor, TNM.
classification, gender and age (Table III). However, there was no relationship between HPV16 E6/E7 expression and any of these factors. The age distribution of HPV16 E6/E7-positive cases was identical to that of all cases examined.

The histopathological features of the HPV16 E6- and E7-positive cases included the characteristic verrucous (or papillary) structure (7 of 11 cases) and koilocytosis of the adjacent mucosa (6 of 9 cases) (Table III, Fig. 2). However, cases 2 and 10 did not exhibit either the verrucous (or papillary) structure or koilocytosis.

We also examined the relationship between HPV16 E6/E7 expression and T and N classifications and clinical stage of the tumors (Table IV), and compared the cumulative patient survival rates of HPV16 E6/E7-positive and -negative cases (Fig. 3). There was no clear relationship between expression of HPV16 E6/E7 mRNAs and tumor stage or patient prognosis.

Table III. Characteristics of the HPV16-positive cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>Primary site</th>
<th>TNM</th>
<th>Gender</th>
<th>Age</th>
<th>Verrucous</th>
<th>Koilocytosis</th>
<th>p53</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lower lip</td>
<td>T1N0M0</td>
<td>M</td>
<td>56</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Maxillary sinus</td>
<td>T2N0M0</td>
<td>M</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Upper gingiva</td>
<td>T2N0M0</td>
<td>F</td>
<td>79</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Upper gingiva</td>
<td>T4N2bM1</td>
<td>M</td>
<td>80</td>
<td>+</td>
<td>-</td>
<td>NI</td>
</tr>
<tr>
<td>5</td>
<td>Tongue</td>
<td>T2N0M0</td>
<td>M</td>
<td>61</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Tongue</td>
<td>T2N1M0</td>
<td>M</td>
<td>63</td>
<td>-</td>
<td>NI</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Tongue</td>
<td>T2N1M0</td>
<td>F</td>
<td>43</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Mouth floor</td>
<td>T4N2aM0</td>
<td>M</td>
<td>68</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Tongue</td>
<td>T2N0M0</td>
<td>M</td>
<td>70</td>
<td>+</td>
<td>NI</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Tongue</td>
<td>T2N2cM0</td>
<td>M</td>
<td>58</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Tongue</td>
<td>T2N0M0</td>
<td>M</td>
<td>27</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

+, positive; -, negative; NI, not informative. M, male; F, female.

Figure 3. The cumulative survival rates of HPV16 E6/E7-positive and -negative cases are shown. There was no clear relationship between expression of HPV16 E6/E7 mRNAs and patient prognosis.

Figure 4. Abnormal nuclear accumulation of p53 gene products was detected by immunohistochemistry.

Figure 5. p53 abnormality was observed in 6 of 10 cases (60.0%) with HPV16 E6/E7 expression, and in 29 of 52 cases (55.7%) without HPV16 E6/E7 expression.
that in these patients i) HPV16 infected cancer cells which
and the positive rate of p53 abnormality. These results suggest
relationship between the expression of HPV16 E6/E7 mRNA
(20-22). However, in the present study, there was no clear
HPV16 E6 and p53 mutation appear to be mutually exclusive
several investigators have reported that the expression of
in cells with constitutive expression of HPV16/18 E6. In fact,
gene mutation and consequent loss of function is not necessary
to the p53 protein and inactivates its function (17). Thus, p53
nuclear accumulation of p53 gene products had a point
we demonstrated that all of the cases which showed abnormal
nuclear accumulation of p53 gene products had a point
mutation in the p53 gene (26,27). In the present study, p53
abnormality was observed in 6 of 10 cases (60.0%) with
HPV16 E6/E7 expression, and in 29 of 52 cases (55.7%)
without HPV16 E6/E7 expression (Fig. 5). There was no clear
relationship between expression of HPV16 E6/E7 and the
positive rate of p53 abnormality.

Discussion

In the present study the expression of HPV16 E6/E7 was
positive in 11 of 71 HNSSCs (15.5%). The HPV16 E6-
positive cases were identical to the HPV16 E7-positive cases,
indicating not only that the experiment was properly
but also that constitutive expression of E6 and E7 in HNSSC
might be prevented by the control of HPV16 infection in
normal squamous epithelium. Recently, vaccines for high-
risk HPV were developed (28,29) and used for prevention of
uterine cervix cancer (30). These vaccines may also be
applicable to preventing the development of HPV-associated
HNSCCs.

Our observations suggest that approximately 15% of
HNSCCs may be caused by HPV16 infection and sub-
sequent constitutive expression of E6 and E7. These tumors
might be prevented by the control of HPV16 infection in
normal squamous epithelium. Recently, vaccines for high-
risk HPV were developed (28,29) and used for prevention of
uterine cervix cancer (30). These vaccines may also be
applicable to preventing the development of HPV-associated
HNSCCs.

Acknowledgements

We would like to thank Mr. Kazumi Akimoto, Ms. Chiaki
Matsuyama-Sato, Ms. Ayako Shimizu, Ms. Takako Ohtsuki,
and Ms. Midori Katayama for their excellent technical
assistance. This study was supported in part by a Grant-in-Aid
from the Ministry of Education, Science and Culture of Japan,
and a research grant from the Seki Minato Foundation.

References

and Sato M: Possible contribution of active MMP2 to lymph-
ode metastasis and secreted cathepsin L to bone invasion of
newly established human oral-squamous-cancer cell lines. Int J
Nakahiro K, Hino S, Omotehara F, Yoshida H and Sato M:
Active-MMP2 in cancer cell nests of oral cancer patients:
Correlation with lymph node metastasis. Int J Oncol 13:
4. Kawamata H, Uchida D, Nakahiro K, Hino S, Omotehara F,
Yoshida H and Sato M: Haematogenous cytokeratin 20 mRNA
as a predictive marker for recurrence in oral cancer patients. Br
5. Uchida D, Kawamata H, Nakahiro K, Omotehara F, Hino S,
Hoque MO, Begum NM, Yoshida H, Sato M and Fujimori T:
Low-dose retinoic acid enhances in vitro invasiveness of human
oral squamous-cell carcinoma cell lines. Br J Cancer 85:
6. Uchida D, Kawamata H, Omotehara F, Nakahiro K,
Kimura-Yanagawa T, Hino S, Begum NM, Hoque MO,
Yoshida H, Sato M and Fujimori T: Role of HGF/c-met
system in invasion and metastasis of oral squamous cell carcinoma
cells in vitro and its clinical significance. Int J Cancer 93:
7. Hoque MO, Kawamata H, Nakahiro K, Omotehara F, Hino S,
Uchida D, Harada K, Begum NM, Yoshida H, Sato M and
Fujimori T: Dysfunction of the p53 tumor suppressor pathway

Table IV. Relationship of HPV16 E6, E7 expression with T,
N classifications and clinical stage.

<table>
<thead>
<tr>
<th>T classification</th>
<th>Number (percentage)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1/6 (16.7%)</td>
<td>0.606</td>
</tr>
<tr>
<td>T2</td>
<td>8/36 (22.2%)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0/8 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>2/21 (9.5%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N classification</th>
<th>Number (percentage)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>6/41 (14.6%)</td>
<td>0.2623</td>
</tr>
<tr>
<td>N1</td>
<td>2/16 (12.5%)</td>
<td></td>
</tr>
<tr>
<td>N2a</td>
<td>1/2 (50.0%)</td>
<td></td>
</tr>
<tr>
<td>N2b</td>
<td>1/5 (20.0%)</td>
<td></td>
</tr>
<tr>
<td>N2c</td>
<td>1/6 (16.7%)</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>0/0 (0.0%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical stage</th>
<th>Number (percentage)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1/6 (16.7%)</td>
<td>0.9344</td>
</tr>
<tr>
<td>II</td>
<td>5/27 (18.5%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2/13 (15.4%)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>3/25 (12.0%)</td>
<td></td>
</tr>
</tbody>
</table>

p53 abnormality in the HPV16-positive cases. Abnormal
nuclear accumulation of p53 gene products was detected by
the immunohistochemical study (Fig. 4). In previous studies,
we demonstrated that all of the cases which showed abnormal
nuclear accumulation of p53 gene products had a point
mutation in the p53 gene (26,27). In the present study, p53
abnormality was observed in 6 of 10 cases (60.0%) with
HPV16 E6/E7 expression, and in 29 of 52 cases (55.7%)
without HPV16 E6/E7 expression (Fig. 5). There was no clear
relationship between expression of HPV16 E6/E7 and the
positive rate of p53 abnormality.

