Effects of vandetanib on adenoma formation in a dextran sodium sulphate enhanced ApcMIN/+ mouse model

DENIS G. ALFÉREZ1,2, ANDERSON J. RYAN2, ROBERT A. GOODLAD3, NICK A. WRIGHT1 and ROBERT W. WILKINSON2

1Cancer Research UK, Histopathology Unit, 44 Lincoln's Inn Fields, London, WC2A 3PX; 2Departments of Cancer and Infection Research, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire SK10 4TG; 3Department of Histopathology, Division of Investigative Science, Imperial College, Hammersmith Hospital, London W12 0NN, UK

Received April 23, 2010; Accepted June 3, 2010

DOI: 10.3892/ijo_00000726

Abstract. The ApcMIN/+ mouse is a well-characterised model of intestinal tumourigenesis in which animals develop macroscopically detectable adenomas. However, most of the adenomas are formed in the small intestine and resolution of events in the colon, the most relevant site for human disease, is limited. Inducing colitis with dextran sodium sulphate (DSS) can selectively enhance the development of lesions in the colon. We demonstrated that a DSS pre-treatment is well tolerated and effective at inducing colon adenomas in an ApcMIN/+ mouse model. We then investigated the effect of inhibiting vascular endothelial growth factor (VEGFR)- and epidermal growth factor receptor (EGFR)-dependent signalling pathways on the development of adenomas induced in DSS-pretreated (DSS/ApcMIN/+) or non-DSS-pretreated (ApcMIN/+) mice using vandetanib (ZD6474), a potent and selective inhibitor of VEGFR and EGFR tyrosine kinase activity. Eight-week old ApcMIN/+ mice were given either drinking water or 1.8% DSS and then vandetanib (ZD6474) (50 mg/kg/day) or vehicle by oral gavage for 28 days and sacrificed 24 h after the last dose and assessed for adenoma formation in the intestines. DSS pre-treatment was well tolerated and significantly enhanced formation of adenomas in the colon of control ApcMIN/+ mice. Vandetanib treatment significantly reduced adenoma formation in the small intestine by 68% (P = 0.001) and the colon by 77% (from 13.8 to 3.1, P = 0.01) of DSS-pretreated ApcMIN/+ mice. In the ApcMIN/+ group, vandetanib also reduced the mean number of adenomas in the small intestine by 76% (P < 0.001) and in the colon by 60% (from 3.9 to 1.5, P = 0.1). DSS-pre-treatment increased the resolution of the model, allowing us to confirm statistically significant effects of vandetanib on the development and growth of colon adenomas in the ApcMIN/+ mouse. Moreover, these preclinical data provide a rationale for studying the effects of vandetanib in early stages of intestinal cancer in the clinic.

Introduction

The link between inflammatory bowel disease (IBD) and colorectal cancer is well established, and individuals with ulcerative colitis are known to be at increased risk of developing colon cancer (1). The importance of various associated inflammatory pathways (2,3) has been demonstrated by the anti-inflammatory COX-2 inhibitor, celecoxib, which reduced the number of colorectal adenomas in patients with familial adenomatous polyposis (4).

There are several animal models of intestinal inflammation (5). Dextran sodium sulphate (DSS), a synthetic, sulphated polysaccharide, is a known irritant of the murine intestinal tract and is effective in inducing colitis through effects on the intestinal epithelium (6). The patho-physiological events that follow exposure to DSS appear clinically and histologically comparable to those observed in human ulcerative colitis (7,8).

DSS treatment causes chronic colitis characterised by an increased production of pro-inflammatory cytokines, lymphoid hyperplasia, inflammatory cell infiltration, focal crypt damage and epithelial injury and ulceration. Damage to the colon occurs within 2-3 days, becomes more pronounced with time, and is proportional to the dose of DSS (9). The number of intestinal tumours produced with DSS alone is relatively low, but can be greatly enhanced if DSS is given after a chemical carcinogen (10-12).

DSS can also enhance the number of tumours in the colon of the ApcMIN/+ mouse (13), which carries a germ-line mutation in the Apc gene similar to that found in patients with human familial adenomatous polyposis. There is a close association between the ApcMIN/+ mouse model and human colorectal cancer (14,15). Therefore, ApcMIN/+ mice have been used extensively as a preclinical model of intestinal cancer, although the adenomas occur predominantly in the small intestine.
intestine. Although adenoma numbers in the colon of Apc\(^{\text{MIN/+}}\) mice can be assessed to give an indication of the effect of a treatment, colon adenoma numbers are usually very low and variable from mouse to mouse. This means that demonstrating statistically significant effects of therapeutic interventions in the colon is difficult to achieve with group sizes that are practicable for routine experiments. It was anticipated that DSS treatment would augment adenoma development in the colon of Apc\(^{\text{MIN/+}}\) mice making this model more amenable to therapeutic studies evaluating effects on colon tumourigenesis, and thereby more relevant to human disease.

Activation of the epidermal growth factor receptor (EGFR) signalling pathway is a key process in the development and progression of many tumours, including colorectal cancer (16). EGFR activity is an important regulator of epithelial cell proliferation, survival and invasiveness (17). Apc\(^{\text{MIN/+}}\) mice bearing an EGFR mutation with a marked reduction in EGFR tyrosine kinase activity had a 90% reduction in intestinal adenoma number compared with Apc\(^{\text{MIN/+}}\) mice expressing the normal EGFR (18). In addition, once beyond microscopic size, continued growth of solid tumours is highly dependent on angiogenesis to provide an adequate supply of oxygen and nutrients (19). Vascular endothelial growth factor (VEGF) is considered a pivotal pro-angiogenic factor, promoting endothelial cell proliferation, migration and survival by binding to, and activating, VEGF receptor-2 (VEGFR2) on tumour endothelial cells (20).

Vandetanib (ZD6474) is a potent, selective, orally active, small-molecule inhibitor of both VEGFR-2 and EGFR tyrosine kinase activities (21) that has demonstrated in vivo efficacy in a histologically diverse panel of established human tumour xenografts and orthotopic models (21,22). Previous studies were able to demonstrate that vandetanib treatment could significantly reduce tumour burden in the small intestine, but not in the colon of Apc\(^{\text{MIN/+}}\) mice (23). In the present study, we evaluated the anti-tumour effects of vandetanib on adenomas induced by DSS pre-treatment in Apc\(^{\text{MIN/+}}\) mice.

Materials and methods

Materials. Chemicals were purchased from Sigma unless otherwise stated. ZD6474 [N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[1-(methyl)piperidin-4-yl] methoxy]quinoxalin-4-amine was synthesized by Astrazeneca Pharmaceuticals as previously described (32).

Animals. Apc\(^{\text{MIN/+}}\) heterozygous mice were originally obtained as a gift from Amy R. Moser (Mc Ardle Laboratory for Cancer Research, University of Wisconsin, Madison, USA). All breeding was by brother-sister mating within our C57BL/6J colony. All procedures were approved by the Cancer Research UK Animal Ethics Committees and covered by the appropriate licences under the Home Office Animal Procedures Act, 1986.

Genotyping of Apc\(^{\text{MIN/+}}\) mice was carried out using reagents described elsewhere (24). DSS dose-response studies were conducted in four groups of Apc\(^{\text{MIN/+}}\) mice (n=6/group, mixed sex, 6-weeks of age) given drinking water alone or drinking water supplemented with 1.2, 1.8 or 2.4%, DSS (MP Biomedicals Inc., Irvine, CA, USA) for 4 days. Mice were sacrificed 3 weeks later (25).

Vandetanib treatment. Apc\(^{\text{MIN/+}}\) mice were divided into four groups of mice (n=7-8/group, mixed sex, 8-weeks of age). Group 1: drinking water alone from day 1; drug vehicle alone (1% polysorbate, Sigma-Aldrich) by oral gavage for 28 days from day 7. Group 2: drinking water alone from day 1; vandetanib (50 mg/kg/day, 0.1 ml/10 g body weight) by oral gavage for 28 days from day 7. Group 3: DSS (1.8%) in the drinking water days 1-4; drinking water alone from day 5; drug vehicle alone by oral gavage for 28 days from day 7. Group 4: DSS (1.8%) in the drinking water days 1-4; drinking water alone from day 5; vandetanib (50 mg/kg/day, 0.1 ml/10 g body weight) by oral gavage for 28 days from day 7. Mice were sacrificed 24 h after the last dose of vehicle/vandetanib.

Adenoma measurements. Mice were sacrificed by
CO\(_2\) inhalation and cervical dislocation. The entire small bowel along with the entire colon, was dissected longitudinally using a recently described cutting guide (26), spread onto filter paper, fixed in Carnoy’s fluid for 3 h and subsequently stored in 70% ethanol. For adenoma counts a calibrated dissecting microscope (x20 magnification) was used to assess the number and diameter of adenomas in the small and large intestines. Adenoma volume was derived from adenoma diameter, and tumour burden was calculated as the product of adenoma number and adenoma volume (27).

ß-catenin. ß-catenin was detected with a mouse anti-ß-catenin monoclonal primary antibody (DakoCytomation Ltd., Ely, UK) and a standard streptavidin-biotin system visualized with 3,3’-Diaminobenzidine (DAB). Ten high-power fields (x40) from 7-8 small intestines/group were assigned a score for the proportion and intensity of staining in the nuclei: for proportion: 0, no staining; 1, >0-33%; 2, >33-66%; and 3, >66-100% stained. For intensity: 0, no staining; 1, >0-33% intensely stained (i.e., remainder are weakly stained or not stained); 2, >33-66%; and 3, >66-100% intensely stained.

Statistical analysis. Results are presented as group mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) used to test of difference amongst groups and if appropriate, Dunnet’s test was performed. Two-way analysis was used to determine the effects of DSS and vandetanib and if there was any interaction between these factors. All statistics were performed using Minitab Statistical Software, Release 10.5 Xtra (Minitab Ltd., Coventry, UK).

Results

DSS dose-response. Four out of six mice on the highest concentration of DSS tested (2.4%) experienced rectal bleeding and were sacrificed early. There was an increase in the number of adenomas throughout the small intestine at DSS concentrations of 1.2 and 1.8%, but lower adenoma counts were seen at 2.4% (Fig. 1). The colon demonstrated a progressive dose-response effect to DSS with a 4-, 8- and 11-fold increase in adenoma count at 1.2, 1.8 and 2.4% DSS, respectively. The diameters of the lesions were not changed after DSS treatment (data not shown) therefore, the effects of DSS on tumour burden directly reflected the effects of DSS on adenoma number (data not shown).
Effects of 1.8% DSS treatment on adenoma formation in ApcMIN/+ mice. Comprised with drinking water alone, administering 1.8% DSS in the drinking water for 4 days significantly increased mean adenoma numbers in the colon (3.9±1.1 to 13.8±3.9, P=0.02) but not in the small intestine (34.1±4.2 compared with 36.0±6.2) (Fig. 2A). In addition, pre-treatment with 1.8% DSS led to a 2-fold increase in adenoma diameter in the colon (0.68±0.1 compared with 1.3±0.2 mm, P=0.004) but there was no significant effect on adenoma diameter in the small intestine (Fig. 2B). Overall, DSS pre-treatment produced a marked increase in overall mean tumour burden in the colon (1.8±1.0 compared with 44.4±14.6 mm³, P=0.01) but not the small intestine (23.9±6.6 compared with 34.7±8.5 mm³, P=NS) (Fig. 2C).

Effects of vandetanib on adenoma development in the small intestine of ApcMIN/+ mice. In the small intestine, compared with vehicle treated animals, treatment with vandetanib (50 mg/kg/day, 21 days) in ApcMIN/+ mice markedly reduced the mean number of adenomas by 76% from 34.2 to 8.3 (P<0.001), the mean adenoma diameter by 42% from 1.10 to 0.64 mm, (P<0.001) and overall tumour burden by 95% from 23.9 to 1.1 mm³ (P<0.05) (Fig. 2A).

In DSS pretreated animals, vandetanib reduced mean adenoma number by 68% from 36.0 to 11.4 (P=0.006), mean adenoma diameter by 39% from 1.22 to 0.75 mm, (P=0.009) and overall tumour burden by 93% from 34.7 to 2.6 mm³ (P<0.05) (Fig. 2A).

Effects of vandetanib on adenoma development in the colon of ApcMIN/+ mice. In the colon of ApcMIN/+ mice, vandetanib treatment produced non-significant reductions in mean adenoma number, diameter, and overall tumour burden (Fig. 2).

In DSS pretreated ApcMIN/+ mice, vandetanib produced statistically significant effects on colon adenoma: there was a 77% decrease in mean adenoma number from 13.8 to 3.1 (P=0.04), a 47% reduction in mean adenoma diameter (1.28 and 0.68 mm, P<0.05), resulting in a marked 96% reduction in tumour burden from 44.4 to 1.6 mm³ which reached (P<0.05) (Fig. 2). A two-way ANOVA analysis of the effects of vandetanib treatment and DSS treatment, for both the small intestine and colon showed no significant interaction between these two factors (P=0.67 and P=0.12, respectively).

DSS effect on β-catenin staining. Compared with drinking water alone, DSS treatment had no effect on the intensity of β-catenin staining or on the proportion of cells in adenomas that stained positive for nuclear β-catenin (Fig. 3). Compared with vehicle treated animals, vandetanib treatment significantly reduced the proportion of the cells showing nuclear β-catenin positivity in ApcMIN/+ mice (2.4±0.1 and 1.3±0.2, P=0.010) in line with a previous report (28). However, in ApcMIN/+ mice pretreated with DSS the effect of vandetanib in reducing the proportion of nuclei with β-catenin positivity did not reach statistical significance (2.2±0.3 and 1.7±0.2, P=NS) (Fig. 3). Vandetanib treatment had no effect on the intensity of β-catenin staining.
staining in either the ApcMIN/+ or the DSS/ApcMIN/+ treatment groups (Fig. 3).

Discussion

Although the predominant site of adenoma formation in ApcMIN/+ mice and in Apc-deficient humans is different, the type of adenoma (intravillous adenoma) found is similar (29). The use of chemically-induced colitis as a carcinogen or procarcinogen has recently gained impetus (12). This is in part due to the appreciation of the close links between inflammation and cancer (1,30), and also because the model of induced colitis yields more colonic lesions and adenomas over a shorter time period than is required with standard carcinogenesis.
models (12). In the present study in ApcMIN/+ mice, the yield of colon adenomas was greatly enhanced in a relatively short time, and the effect appeared to be somewhat selective for the colon compared with the small intestine.

The ApcMIN/+ mice used in the present work appeared more sensitive to DSS treatment compared with previous published data which used multiple cycles of 4% and over of DSS in drinking water (13). Although strains of mice can have widely different susceptibilities (31) both studies used the same mouse strain (C57BL/6J).

Differences in gut micro-flora can have a significant impact on the local inflammatory environment and subsequent response to gastrointestinal irritants. We speculate that in the present study, the effectiveness of the relatively low dose of DSS (1.8%) versus previous studies (13); may in part reflect differences in animal housing (cages etc) and thus the specific pathogen-free conditions between the two animal facilities.

The results of the present study demonstrate that in the DSS-ApcMIN/+ mouse model, vandetanib treatment significantly reduced adenoma number, size and burden in both the small intestine and, most importantly, in the colon suggesting an important role for EGFR and VEGFR signalling in adenoma development in the colon. Notably, with groups of 7-8 animals in the present study or with groups of 12 animals in a previous study (28), the effect of vandetanib in reducing colon adenomas in ApcMIN/+ mice did not reach statistical significance. In contrast, in the DSS-pretreated animals the effects of vandetanib treatment in the colon were both substantial and statistically significant. Therefore, using DSS-pretreated ApcMIN/+ mice has the potential to significantly reduce the number of animals needed to detect a treatment effect against colon adenomas in future therapeutic studies. It is of interest that the effects of vandetanib in reducing adenoma burden were of broadly similar magnitude in both the small intestine and the colon of DSS-pretreated ApcMIN/+ mice, indicating that the development and growth of adenomas at both these sites may be underpinned by similar biological processes, including activation of both EGFR and VEGFR-2 signalling.

It has been shown previously that nuclear ß-catenin staining is markedly increased in adenoma compared with non-adenoma tissue from the intestines of ApcMIN/+ mice (28) and in the present study we showed that nuclear ß-catenin staining was similarly high irrespective of DSS-pretreatment. Vandetanib reduced adenoma ß-catenin nuclear staining (both intensity and proportion) in ApcMIN/+ mice, in line with previous observations (28), but interestingly vandetanib had no significant effect following DSS-treatment. At present, the relevance of this observation is uncertain, but it may indicate that subtle changes in the underlying biology of colon adenomas may occur following DSS treatment, but this would require further work to confirm.

In conclusion, DSS-pretreatment significantly and selectively augments the formation of adenomas in the colon of ApcMIN/+ mice allowing more efficient use of this model of early disease to evaluate novel therapeutics. Vandetanib significantly reduced tumour burden in the colon of DSS-pretreated ApcMIN/+ mice providing a scientific rationale for studying the effects of dual VEGFR and EGFR signalling inhibition in early stages of intestinal cancer in the clinic.

![Figure 3. Effects of vandetanib (ZD6474) on ß-catenin staining. Immunological staining for ß-catenin in control ApcMIN/+ mice and ApcMIN/+ pre-treated with DSS (1.8%). (A) Whole small intestinal adenoma in ApcMIN/+ control mouse and (B) in ApcMIN/+ pre-treated with DSS (1.8%) (scale 100 and 500 μM respectively). Mean ß-catenin staining intensity (C) or proportion (D). N=7-8 per group. P-values are shown for effects of vandetanib compared with relevant control (0% or 1.8% DSS).](image-url)
Acknowledgements

We thank AstraZeneca and the Biology and Biotechnology Science Research Council for providing DCA with a CASE studentship. We also thank the staff of Cancer Research UK, Biological Services Unit, London, UK for their excellent animal husbandry and Dr Ian Rosewell (Cancer Research UK, Transgenic Unit, London, UK) for genotyping.

References