Abstract. Non-steroidal anti-inflammatory drugs (NSAIDs) attenuate tumor net growth in clinical and experimental cancer. Evaluations in cell culture experiments have implied involvement of growth factor and G-protein related signaling pathways to explain decreased proliferation, angiogenesis, increased cell adhesion and apoptosis. Sparse information is however available from studies on growing tumors in vivo. The aim of the present study was to map alterations in selected signal proteins in relation to heterogeneous tissue expression of COX-2 in tumors during COX inhibition. MCG 101 cells were exposed to indomethacin treatment both in vivo and in vitro to reduce PGE₂ production. Tumor tissue specimens were taken for immunohistochemical analyses and qPCR determinations. Protein markers were selected to reflect cell proliferation and cell cycling, angiogenesis and metastasis in relationship to COX-2 staining in tumor tissue. Indomethacin did not change overall COX-2 staining in tumor tissue, but altered its distribution towards increased staining in cell nuclei/ nucleoli and decreased COX-2 staining heterogeneity in tumor tissue. P53 staining was decreased, while PCNA and TGFβ3 staining were increased by indomethacin in tumor areas with high presence of COX-2, which correlated to staining of BAX, TUNEL, Bcl-2, c-jun, p21, p27, p53 and NM23. Net tumor growth was predicted by EGF-R, p21 and p27 proteins in tumor tissue during indomethacin treatment (multivariate analysis). RNA transcript analyses showed decreased EGF-R and KRas expression in vivo, following indomethacin treatment, which also included KRas, PI3K, JAK1, STAT3 and c-jun, mRNAs in cultured tumor cells. In conclusion, our results extend earlier studies on cell culture experiments and demonstrate that EGF-R and downstream KRas pathways communicate effects of increased prostaglandin activity in tumor tissue in vivo.

Introduction
It is well known that non-steroidal anti-inflammatory drugs (NSAIDs) attenuate tumor net growth, probably due to attenuated local and systemic inflammation due to reduced prostaglandin production in tumor and host tissues (1-6). This leads to decreased host appearance of acute phase proteins in both tumor-bearing animals and cancer patients (2,7-9). Such overall effects are related to reduced tumor growth (3,4,7), improved appetite and attenuation of cachexia with subsequent prolongation of survival in experimental models (3,4,10,11). Similar overall improvements have been observed in cancer patients on systemic anti-inflammatory treatment (9,12-15). Thus, cyclooxygenase inhibition evokes both local tumor and host systemic effects characterized by decreased cell proliferation and increased tumor cell apoptosis related to attenuated angiogenesis demonstrated in vivo by intravital chamber technology (16-20). Such effects appear to be related to complex interactions between growth factors and cytokines on tumor cell membrane receptors with subsequent downstream signaling pathways (21-32), but represent probably also net activities in cross-talk between host stroma and tumor cells with prostanoids being important factors, particularly PGE₂, with signaling through subtype EP₁ receptors in host and tumor cells (16,33). However, most information on specific pathways across tumor cell membranes originates from cell culture experiments (21-31), and less confirmed information is available from tissue and organ perspectives (34-36). Therefore, we have evaluated the relationship between net tumor growth and various proteins with recognized importance for tumor progression, in order to initiate mapping of mechanisms behind reduced tumor growth by COX inhibition in vivo in a tumor model highly sensitive to PGE₂ (3,7,10,11).

Materials and methods
Tumor model. A methylcholanthrene-induced sarcoma (MCG-101) was used in the present study (37). This tumor produces increased systemic levels of prostaglandin E₂, and COX-1/COX-2 inhibition by indomethacin reduced tumor growth, improved appetite and nutritional state and prolonged survival by attenuation of systemic concentrations of PGE₂ down to normal levels in tumor-bearing hosts (3,10,11). The MCG-101 tumor has been grown continuously in vivo at our
performed according to the institutional guidelines on ethics. The experiments were scheduled. They were provided free access to water and
controls. All animals were housed in plastic cages in a
isolation (17); 18 mice were used in the second experiment
inoculated in intravital chambers for early detection and
were used; 16 in the first experiment where tumors were
weight-stable (20-24 g), female, wild-type C57 black mice
two kind of experiments. In total 34, adult, age-matched,
Animal groups
12-14 days of tumor growth (37).

TUNEL apoptosis detection
In situ cell death detection kit, AP Roche Applied Science 11684809910 NA c NA c

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Isotype</th>
<th>Supplier</th>
<th>Product code</th>
<th>Concentration µg/ml</th>
<th>Antigen retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat anti-human Cox-2</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-1746</td>
<td>1</td>
<td>E a</td>
</tr>
<tr>
<td>Rabbit anti-human p53</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-6243</td>
<td>2</td>
<td>MW b</td>
</tr>
<tr>
<td>Rabbit anti-human EGFR</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-03</td>
<td>0.25</td>
<td>E a</td>
</tr>
<tr>
<td>Rabbit anti-human Bax</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-493</td>
<td>0.25</td>
<td>E a</td>
</tr>
<tr>
<td>Rabbit anti-human Bcl-2</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-492</td>
<td>0.25</td>
<td>E a</td>
</tr>
<tr>
<td>Rabbit anti-human c-Jun</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-1694</td>
<td>2</td>
<td>MW b</td>
</tr>
<tr>
<td>Rabbit anti-human p21</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-397</td>
<td>4</td>
<td>MW b</td>
</tr>
<tr>
<td>Rabbit anti-human p27</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-528</td>
<td>2</td>
<td>MW b</td>
</tr>
<tr>
<td>Mouse anti-human PCNA</td>
<td>IgG2a</td>
<td>Santa Cruz</td>
<td>sc-56</td>
<td>1</td>
<td>MW b</td>
</tr>
<tr>
<td>Goat anti-mouse TRT</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-9652</td>
<td>4</td>
<td>MW b</td>
</tr>
<tr>
<td>Rabbit anti-human TGF B3</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-82</td>
<td>0.25</td>
<td>E a</td>
</tr>
<tr>
<td>Rabbit anti-human nm 23-H1</td>
<td></td>
<td>Santa Cruz</td>
<td>sc-343</td>
<td>0.5</td>
<td>E a</td>
</tr>
</tbody>
</table>

Table I. List of antibodies and working conditions.

laboratory since 1972. It was originally induced chemically
as a sarcoma, but more recent evaluations demonstrated that
it had few if any characteristics of a sarcoma. It should
therefore rather be classified as a low or undifferentiated
rapidly growing solid tumor. It has a reproducible and
exponential growth pattern with a doubling time ~55-60 h
in vivo (38). It leads to 100% tumor take and does not give
rise to visible metastases within the time period it kills
the host in a state of severe anorexia and cachexia, usually after
12-14 days of tumor growth (37).

Animal groups. The present investigation was carried out by
two kind of experiments. In total 34, adult, age-matched,
weight-stable (20-24 g), female, wild-type C57 black mice
were used; 16 in the first experiment where tumors were
inoculated in intravital chambers for early detection and
isolation (17); 18 mice were used in the second experiment
with conventional s.c. tumor inoculation as described (3,37).
Half the number of tumor-bearing animals was treated with
indomethacin in drinking water as described below (study
groups), and remaining tumor-bearing animals served as
controls. All animals were housed in plastic cages in a
temperature controlled room (24°C) with a 12 h light/dark
schedule. They were provided free access to water and
standard laboratory rodent chow. The experiments were
performed according to the institutional guidelines on ethics.

Isolated tumor cells (105) or tumor tissue (3 mm3) were
implanted under light i.p. anesthesia (Ketalar®, Rompun®). The
mice were either sacrificed after 5 days (intravital chambers)
or 10 days (conventional s.c.) of tumor growth as indicated in
tables and figures. Final tumors were dissected free for
weighing. Treatment groups received indomethacin (Confortid,
5 mg/ml, Dumex-Alpharma) provided in the drinking water
corresponding to 6 µg/ml drinking water (3,10,11,18). The
appropriate dilution of indomethacin in the drinking water
was calculated based on daily normal water consumptions of
the mice (3-4 ml water/mouse/day) (3). This corresponds to
indomethacin of 1 µg/g bw/day. Controls received ordinary
drinking water. Micro-tumors growing in intravitral chambers
were harvested for analyses as described (16).

Immunohistochemistry. For IHC, tumor tissue was kept
refrigerated in 4% buffered formaldehyde solution for three
days, washed and kept in 70% ethanol until dehydration and
paraffin embedding. Formalin-fixed and paraffin embedded
tissue sections (4 µm) were deparaffinized and rehydrated
according to standard procedures and rinsed twice in 5 mM
Tris-buffered saline (TBS), pH 7.8. All further washes were
done in TBS throughout the experiment. Sections were either
microwave-irradiated or enzyme treated. Specification of
antigen retrieval (AR), antibodies, host species, final con-
centrations and suppliers are given in Table I. Sections were
mounted with Shandon coverplates. Non-specific protein
binding was initially blocked with TBS, containing 5% fat-
free dry milk, which was also used for dilution of antibodies
and normal IgG. Further non-specific binding was also
blocked with either normal goat IgG (sc-2028) or rabbit IgG
(sc-2027) (Santa Cruz) or normal mouse IgG2a (X0943, Dako
Cytomation), to match the species of secondary antibodies.
This was followed by Dako Biotin Blocking System, X0590.
Primary antibodies and corresponding concentrations of
normal IgG for negative controls, were incubated overnight
at +4°C. Secondary biotinylated antibodies used, were goat
anti-rabbit (sc-2040, 1/400) or goat anti-mouse (sc-2039,
1/200) (Santa Cruz) or rabbit anti-goat (Dako E0466, 1/500).
Following rinses, Streptavidin-alkaline phosphatase (RPN
RNA extraction and cDNA synthesis. Tissue samples were either snap-frozen in liquid nitrogen and kept at -80°C or put in RNAlater (Ambion) for 24 h at 4°C and then kept at -20°C until analysis of RNA expression. Total RNA was either isolated by the RNAzol method (code CS-101, Cinna/Biotec Laboratories, Inc., TX, USA) or extracted with RNeasy Micro kit (cat. no. 74004, Qiagen) following the protocol for 'Total RNA isolation from microdissected cryosections' (intravital chamber tumors). One microgram or 500 nanogram of total RNA from the two experiments was reverse transcribed to cDNA with Advantage™ RT-for-PCR kit (Clontech cat. no. 639506, BD BioScience) according to kit protocol. Each sample was diluted to a final volume of 100 μl. Reactions were run in parallel, with the reverse transcriptase being omitted in the control for DNA contamination. RNA from cultured cells was extracted with RNeasy Midi kit (Qiagen) according to the kit instructions. Synthesis of cDNA from MCG-101 cultured cells was performed as described above, with 1 μg of total RNA reversed transcribed. RNA quality and concentrations were checked after extraction in Bioanalyzer from Agilent Technology before cDNA synthesis.

Quantitative real-time PCR. Real-time PCR was performed in a LightCycler 1.5 with QuantiTect SYBR Green PCR kit and QuantiTect Primer assays (Table II). PCR conditions were: 15 min, 95°C initial activation; 3-step cycling with 15 sec, 94°C denaturation; 20 sec, 55°C annealing; 20 sec, 72°C extension. Number of cycles were 45-50. cDNA fractions (2 μl) were used for each amplification. All samples were analyzed in duplicate and compared to the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Control Amplimer Set, 639003, BD Biosciences), which was used as housekeeping gene and amplified with LightCycler Fast Start DNA Master™ SYBR Green 1 (code 03515885001, Roche). PCR conditions for GAPDH: 10 min, 95°C initial activation; 3-step cycling with 10 sec, 95°C denaturation; 6 sec, 60°C annealing; 18 sec, 72°C elongation for 40 cycles. Quantitative results were derived using the relative standard curve method, where standard specimen was cDNA from MCG tumor tissue of an untreated control mouse. All PCR products had expected size, analyzed with Agilent 2100 Bioanalyzer in DNA 1000 Chip and all reactions were confirmed using both positive and negative controls (one dilution of standard curve cDNA and water substituted for cDNA, respectively).

Cell culture. MCG-101 cell line, established from the mouse MCG-101 tumor according to standard procedures, was used in vitro. Cells were maintained in McCoy's 5A medium (Fisher Scientific, Sweden) supplemented with 10% fetal calf serum (FCS), referred to as complete medium, with a split ratio of 1/5 once weekly and with a medium change in between (McCoy's 5A + 2% FCS). Standard concentrations of penicillin (100 IU/ml)streptomycin (100 μg/ml) and L-glutamin (292 μg/ml) were used. Tissue culture flasks, 25 cm², were used. Indomethacin (Confortid®, 8.4 μM) was added at start of cell cultures grown in complete medium or replaced with saline in controls. Decreased PGE2 production in conditioned media was measured as a control of drug efficiency as earlier described (18).

Statistics. Results in tables and figures are presented as mean ± SEM. Statistical comparisons between different groups

| Table II. Genes downstream to the EGF-R as illustrated in Fig. 5A. |
|-------------------------|---------------------------|-----------------|
| Gene | Accession no. | Primer assay code |
| Mm EGF-R | NM_007912, NM_207655 | QT00101584 |
| Mm JAK1 | NM_146145 | QT00158438 |
| Mm STAT1 | NM_009283 | QT01149519 |
| Mm STAT3 | NM_011486, NM_213659 | QT00148750 |
| Mm ELK1 | NM_007922 | QT00172893 |
| MnPI3K | NM_008839 | QT00149709 |
| Mn Jun | NM_010591 | QT00296541 |
| Mn K-Ras | NM_021284 | QT00173033 |

1234, 1/150, (Amershams Biosciences) was added. For colour development, Dako Fast Red Substrate System (K699) was used followed by counter staining in hematoxylin. Sections were mounted in Mount Quick Aqueous (Histolab Products AB, Sweden). In situ cell death detection, was run according to kit instructions, as earlier described (Table I) (10).
Table III. Protein staining area (%) of individual proteins and DNA strand breaks (TUNEL) in tumor tissue from indomethacin-treated and control mice in randomly selected areas.

Protein	Indomethacin	Control	p-value	Function
COX-2	2.14±0.69	1.64±0.46	NS	Inflammation
p53	3.74±0.84	5.91±0.97	<0.01	Angiogenesis, apoptosis, cell cycle and cell proliferation
EGF-R	9.75±2.23	12.76±2.39	NS	Angiogenesis, apoptosis, cell cycle and cell proliferation
BAX	16.3±4.3	28.7±4.5	NS	Apoptosis
TUNEL	17.2±2.6	23.9±3.0	NS	Apoptosis
Bcl-2	4.37±1.71	2.51±0.56	NS	Apoptosis
c-jun	7.33±1.46	4.35±0.75	NS	Apoptosis, cell cycle and cell proliferation
TRT	0.30±0.19	0.18±0.08	NS	Cell cycle and cell proliferation
p21	0.07±0.02	0.06±0.02	NS	Cell cycle and cell proliferation
p27	2.21±0.47	5.29±1.52	<0.001	Cell cycle and cell proliferation
PCNA	14.2±1.8	6.75±0.88	<0.03	Cell cycle and cell proliferation
TGFß3	0.15±0.09	0.09±0.02	NS	Cell cycle and cell proliferation
NM23	19.1±3.4	21.7±3.2	NS	Metastasis/Invasion

Mean ± SEM; Mann-Whitney U-test; n1, number of animals sacrificed 10 days after tumor implantation; n2, number of evaluated vision fields of tumor tissue; NS, not significant.

Figure 1. (A) COX-2 staining areas in tumor tissue from indomethacin treated (10 days) and control mice (Mean ± SEM). (B) Coefficient of variation of COX-2 staining in tumor tissue from indomethacin treated (10 days) and control mice (Mean ± SEM, p<0.05).

Results

The overall presence of COX-2 in tumor tissue was not significantly affected by indomethacin treatment (Fig. 1A; Table III), but the variation of COX-2 protein staining in such tumors was significantly reduced following indomethacin treatment (p<0.05) (Fig. 1B). This variation was calculated from information in immunohistological sections from tumors across areas with pronounced and low heterogeneity (high, low coefficient of variation) (Fig. 2). There was also a significantly positive correlation between the coefficient of variation of COX-2 staining area and tumor weight (Fig. 3). p53 was significantly decreased in tumor tissue, while PCNA and TGFß3 were significantly increased following indomethacin treatment (Table III). Staining areas of c-jun and p27 correlated to COX-2 staining in indomethacin treated animals, but not in controls (Table IV), while staining areas of BAX, TUNEL and p53 were positively correlated to COX-2 staining in tumor tissue from control animals, but not in indomethacin treated tumors. Staining areas of Bcl-2, NM23 and p21 correlated to COX-2 staining in tumors from both indomethacin treated and untreated controls (Table IV). EGF-R staining in tumor tissue was positively correlated to tumor growth, while c-jun, NM23 and PCNA correlated negatively in univariate analysis (Table V). Aspects beyond correlations among specific protein staining were altered distributions of COX-2 and PCNA proteins in tumor cells from indomethacin treated tumors. COX-2 protein appeared present more in nuclei and nucleoli with less cytoplasmic granulation following...
indomethacin treatment compared to untreated controls (Fig. 4A and B, p<0.05). PCNA protein appeared smoothly stained in nuclei and cytoplasm from treated tumors compared to the granulated staining of control tumors.

Forward stepwise regression analysis, which involved all evaluated stained protein factors, showed that EGF-R belonged to a significantly predicting model of tumor growth in both indomethacin treated and untreated control animals (Table VI), while p21 and p27 protein predicted tumor growth in indomethacin treated mice only (Table VI). These results suggest that EGF-R signaling is a key transduction pathway related to tumor growth attenuation during indomethacin treatment in vivo. This conclusion was further supported by the observations that indomethacin treatment decreased tumor tissue transcripts of EGF-R and KRas mRNA during indomethacin treatment, although JAK1, STAT1, STAT3, cJun, Elk1 and PI3K transcripts did not show any significant

Table IV. Correlation analyses between staining area of COX-2 and growth related proteins and DNA strand breaks (TUNEL) in tumor tissue from indomethacin treated and control mice evaluated in areas with positive COX-2 staining.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Treatment</th>
<th>n1</th>
<th>n2</th>
<th>Rho</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAX</td>
<td>Indomethacin</td>
<td>6</td>
<td>20</td>
<td>0.30</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6</td>
<td>35</td>
<td>0.54</td>
<td><0.01</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Indomethacin</td>
<td>7</td>
<td>26</td>
<td>0.03</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6</td>
<td>35</td>
<td>0.58</td>
<td><0.001</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>Indomethacin</td>
<td>7</td>
<td>26</td>
<td>0.74</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6</td>
<td>33</td>
<td>0.58</td>
<td><0.01</td>
</tr>
<tr>
<td>c-jun</td>
<td>Indomethacin</td>
<td>9</td>
<td>35</td>
<td>0.47</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>9</td>
<td>53</td>
<td>0.14</td>
<td>NS</td>
</tr>
<tr>
<td>Cell cycle and cell proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p21</td>
<td>Indomethacin</td>
<td>9</td>
<td>35</td>
<td>0.35</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>9</td>
<td>53</td>
<td>0.36</td>
<td><0.01</td>
</tr>
<tr>
<td>p27</td>
<td>Indomethacin</td>
<td>6</td>
<td>22</td>
<td>0.49</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6</td>
<td>34</td>
<td>0.10</td>
<td>NS</td>
</tr>
<tr>
<td>p53</td>
<td>Indomethacin</td>
<td>6</td>
<td>25</td>
<td>0.24</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6</td>
<td>35</td>
<td>0.46</td>
<td><0.01</td>
</tr>
<tr>
<td>Metastasis/Invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM23</td>
<td>Indomethacin</td>
<td>9</td>
<td>33</td>
<td>0.48</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>9</td>
<td>50</td>
<td>0.46</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Spearman rank correlation analysis: n1, number of animals sacrificed 10 days after tumor implantation; n2, number of evaluated vision fields of tumor tissue; NS, not significant.
difference in tumor tissue following indomethacin treatment in vivo (Table VII) (Fig. 5A and B). By contrast, MCG 101 cells displayed a pronounced loss of EGF-R mRNA when cultured in vitro for 3 days. Transcripts of KRas, PI3K, JAK1, STAT3 and c-jun were down-regulated in vitro in the presence of indomethacin while STAT1, ELK1 and GAPDH (house-keeping gene) did not show any such decline (Table VIII).

Discussion

The relationship between cancer and inflammation is well known. Virchow hypothesized as early as 1863 that origin of cancer is at sites with chronic inflammation, where much later research pointed out prostaglandins as key factors. Studies around 1960 confirmed that unspecific cyclooxygenase inhibition influenced tumor net-growth, in part by reduced angiogenesis. Our own research has followed up on these observations demonstrating that COX-1/COX-2 inhibition by indomethacin, a classic unspecific cyclooxygenase inhibitor, affects local and systemic inflammation in both experimental and clinical cancer (3,4,9,12). Such inhibitory effects may lead to reduced tumor growth and improved tumor-host conditions by promoting appetite and reduced catabolism in several tissues.

In experimental models, it is evident that such effects are related to altered prostanoid metabolism, particularly reduced production of PGE2, which signals through specific membrane G-protein related subtype EP1-4 receptors (33,36). Similar findings are also available in human models (39). Accordingly, we observed that EP3 expression in colorectal cancer tissue predicted reduced survival in multivariate analyses following...
primary radical resections (39). Such results agree with evidence that both primary and secondary interventions with cyclooxygenase inhibitors appeared to reduce incidence and progression of colorectal cancer in various cohorts and individuals (40,41). Such findings have encouraged studies on cell and tissue specimens with observations that COX-2 expression and prostanoid activity in a variety of tumors are elevated. However, sparse information exists from studies in vivo where COX-2 is usually not evenly distributed among cells in malignant tumors, although it is often claimed that COX-2 is generally up-regulated in cancer cells.

By contrast, immunohistochemical evaluations of tumor tissue usually demonstrate that COX-2 expression rather appears to be localized to certain areas within tumors, with occasionally increased expression also in normal stroma cells, as observed for RNA transcript of COX-2 in colon cancer tissue (42). Therefore, it remains unclear whether increased COX-2 expression in tumor cells is the result of true up-regulation in response to certain factors or may represent a loss of suppression in such cells. Whatever the explanation, uneven appearance of COX-2 protein in tumor tissue implies tumor cell heterogeneity regarding prostanoid production (43,44). Thus, it is difficult to confirm how cell signaling exerts effects among different cells in heterogeneous tumor compartments. In vitro co-cultivation of highly selected tumor and normal cells may not correctly reflect the complex in vivo conditions among stroma, endothelial cells and infiltrating inflammatory cells in proximity to proliferation of tumor cells in areas with hypoxia (45). Therefore, a main issue in the present study was to evaluate co-variations between COX-2

Figure 5. (A) The EGF receptor signal transduction pathway with down-stream regulators. (B) EGF-R and KRas2 mRNA transcripts in tumor tissue at 10 days of tumor growth with and without indomethacin treatment.
forward stepwise multivariate regression analyses, indicated correlated to net tumor growth in univariate analyses, while NM23. These factors are related to apoptosis, cell cycling, COX-2 and BAX, TUNEL, Bcl-2, c-jun, p21, p27, p53 and other proteins confirmed significant relationship between tissue. Moreover, correlation analysis between COX-2 staining altered staining areas of p53, PCNA and TGFß3 in tumor clear that indomethacin provision to tumor-bearing animals should represent more definite information.

Estimates of protein content by staining as major variables to formed rapidly proliferating cells with altered transporting of RNA transcripts. However, transcription information is not particularly when compared to quantification of tissue content staining is subjected to comparatively low sensitivity (49), regarded important, since detection of alterations in protein expression as the housekeeping gene; NS, not significant. Mean ± SEM, units quantified by qRT PCR are normalized to GAPDH expression.

Interestingly, EGF-R, PCNA, c-jun and NM23 also protein staining in areas of tumor cells related to the staining of defined proteins with importance for cell proliferation, apoptosis, cell adhesion, metastasis and angiogenesis (46,47).

Our previous and similar attempts focused mainly on formation of micro-tumors and angiogenesis as related to cyclooxygenase inhibition (16,48). Therefore, present experiments focused mainly on larger established tumors with confirmed sensitivity to cyclooxygenase metabolites for progression. This approach was chosen in order to increase the power to detect long-term relevant relationships between estimates of protein staining and tumor growth in the present model highly dependent on tissue PGE2 production. This was the power to detect long-term relevant relationships between estimates of protein staining and tumor growth in the present model highly dependent on tissue PGE2 production. This was regarded important, since detection of alterations in protein staining is subjected to comparatively low sensitivity (49), particularly when compared to quantification of tissue content of RNA transcripts. However, transcription information is not always reflecting protein levels in cells, particularly in transformed rapidly proliferating cells with altered transporting and splicing of mRNA. Therefore, we preferred to remain with estimates of protein content by staining as major variables to allow evaluations of cellular distribution among cells, which should represent more definite information.

Despite limited sensitivity of present methodology it was clear that indomethacin provision to tumor-bearing animals altered staining areas of p53, PCNA and TGF83 in tumor tissue. Moreover, correlation analysis between COX-2 staining and other proteins confirmed significant relationship between COX-2 and BAX, TUNEL, C-jun, p21, p27, p53 and NM23. These factors are related to apoptosis, cell cycling, cell proliferation, metastasis and tumor tissue invasion.

Interestingly, EGF-R, PCNA, c-jun and NM23 also correlated to net tumor growth in univariate analyses, while forward stepwise multivariate regression analyses, indicated EGF-R a positive and negative predictor of net tumor growth in treated and untreated mice. Similarly, significant predictions were obtained from p21 and p27 following cyclooxygenase inhibition. These indications agree with several previous studies from cell culture experiments (21-31), where the EGF-R pathway was involved in prostaglandin forward and backward signaling within tumor cells, although it is not yet clear how EGF-R promotes PGE2 production and how increased PGE2 concentrations stimulate the appearance of EGF-R ligand(s) and up-regulation of EGF-R in cell cultures. Accordingly, our qPCR analyses confirmed that EGF-R and KRas transcripts were significantly decreased in tumor tissue from indomethacin treated mice in vivo, which may subsequently influence downstream signaling implied from our in vitro estimates of RNA transcripts (Fig. 5A; Table VII). Thus, our present information suggests that tumor cell clones, with increased COX-2 expression and increased PGE2 production, may be sensitive to EGF-R inhibition particularly in combination with cyclooxygenase inhibitors of either COX-2 alone or unspecific COX-1/COX-2 inhibitors. This agrees with our recent observation that COX-1 production parallels COX-2 induction, in clinical colon cancer tissue and is also in agreement with observations in experimental models (50). COX-2 has been reported to be present on the endoplasmic reticulum and on the outer and inner nuclear membrane as well as in the nucleoplasm of cells. Accordingly, indomethacin treated tumors displayed association of COX-2 to nucleoli, which may render the enzyme less accessible to arachidonic acid as an explanation to decreased PGE2 levels in tumor tissue (51,52).

Protein staining was evaluated in a number of areas within each tumor and the coefficient of variation in staining was used as a measure of variability of protein content in tumor tissue. The variation of COX-2 staining within a tumor appeared significantly reduced by indomethacin treatment, but the overall amount of COX-2 protein staining in tumor tissue was as expected not affected by indomethacin treatment.

Table VII. Tumor tissue transcripts downstream of the EGF receptor signal transduction pathway (Fig. 5A), at 5 and 10 days of tumor growth.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Days of treatment</th>
<th>Indomethacin</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF-R</td>
<td>5 days</td>
<td>16.0±3.0</td>
<td>23.6±12.0</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>10 days</td>
<td>10.5±0.48</td>
<td>4.8±1.22</td>
<td><0.03</td>
</tr>
<tr>
<td>K-Ras</td>
<td>5 days</td>
<td>0.27±0.03</td>
<td>0.45±0.10</td>
<td><0.07</td>
</tr>
<tr>
<td></td>
<td>10 days</td>
<td>0.42±0.11</td>
<td>0.90±0.06</td>
<td><0.01</td>
</tr>
<tr>
<td>PI3K</td>
<td>5 days</td>
<td>0.21±0.01</td>
<td>0.24±0.02</td>
<td>NS</td>
</tr>
<tr>
<td>JAK 1</td>
<td>5 days</td>
<td>0.40±0.01</td>
<td>0.42±0.05</td>
<td>NS</td>
</tr>
<tr>
<td>STAT 1</td>
<td>5 days</td>
<td>0.47±0.10</td>
<td>0.25±0.05</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>10 days</td>
<td>0.53±0.12</td>
<td>1.10±0.39</td>
<td>NS</td>
</tr>
<tr>
<td>STAT 3</td>
<td>5 days</td>
<td>0.49±0.05</td>
<td>0.69±0.05</td>
<td>NS</td>
</tr>
<tr>
<td>ELK 1</td>
<td>5 days</td>
<td>0.29±0.02</td>
<td>0.28±0.03</td>
<td>NS</td>
</tr>
<tr>
<td>c-jun</td>
<td>5 days</td>
<td>0.21±0.03</td>
<td>0.17±0.02</td>
<td>NS</td>
</tr>
</tbody>
</table>

Mean ± SEM, units quantified by qRT PCR; NS, not significant.

Table VIII. mRNA levels in MCG 101 cells cultured with and without indomethacin in the medium for 3 days.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Cultured MCG 101 cells (n=5)</th>
<th>Controls (n=5)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF-R</td>
<td><0.01</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>K-Ras</td>
<td>0.93±0.07</td>
<td>1.66±0.15</td>
<td><0.003</td>
</tr>
<tr>
<td>PI3K</td>
<td>0.81±0.01</td>
<td>1.08±0.03</td>
<td><0.0001</td>
</tr>
<tr>
<td>JAK 1</td>
<td>0.72±0.03</td>
<td>1.00±0.06</td>
<td><0.004</td>
</tr>
<tr>
<td>STAT 1</td>
<td>0.90±0.03</td>
<td>1.11±0.10</td>
<td>NS</td>
</tr>
<tr>
<td>STAT 3</td>
<td>0.60±0.05</td>
<td>1.10±0.02</td>
<td><0.001</td>
</tr>
<tr>
<td>ELK 1</td>
<td>1.36±0.09</td>
<td>1.36±0.13</td>
<td>NS</td>
</tr>
<tr>
<td>c-jun</td>
<td>0.38±0.02</td>
<td>0.84±0.08</td>
<td><0.001</td>
</tr>
<tr>
<td>GAPDH</td>
<td>1.12±0.01</td>
<td>1.01±0.02</td>
<td><0.004</td>
</tr>
</tbody>
</table>

Mean ± SEM, units quantified by qRT PCR; NS, not significant.
although COX-2 transcripts may be at some cellular conditions (50). These results suggest that indomethacin made the tumors more homogeneous in COX-2 expression, perhaps by interruption of positive feedback ligand mechanism(s). There was also a significant correlation between the coefficient of variation of COX-2 staining and tumor weight, which confirms that large tumors were more heterogeneous in COX-2 expression than small tumors. Thus, it is likely that rapid tumor growth and progression in the present model are highly dependent on COX-2 expressing cell clones. It is also possible that tumor derived PGE2 stimulates host stroma cells to induce EGF-R and possibly other growth factors for signaling related to increased proliferation, attenuated apoptosis and increased angiogenesis (53). Thus, it should be rewarding to use unspecific COX-inhibitors for tumor growth attenuation as confirmed (9), since substantial amounts of PGE2 are produced by host cells.

Interestingly, cultured MCG 101 cells did not seem to be dependent at all on EGF-R expression since transcript levels were close to background levels with and without indomethacin in the incubation medium. This may indicate that some factor(s) in fetal calf serum represents alternative upstream signaling to PI3K, since several downstream factors were reduced by indomethacin in translation of decreased proliferation and increased apoptosis (18,50). Discrepant EGF-R results in vivo vs. in vitro conditions may also imply the role of tumor stroma cells for in vivo communication as earlier indicated in our clinical studies (53).

In conclusion, the present investigation on composite tumor tissue supports previous reported findings from cell culture experiments that the EGF-R pathway communicates significant effects secondary to increased prostaglandin activity within tumor cells and probably also among cells in tumor tissue. Our findings extend previous information to include downstream transcription of at least KRas in vivo (24,54-58) and several transcription factors in vitro (Table VIII).

Acknowledgements

This study was supported in parts by grants from Assar Gabrielsson Foundation (AB Volvo), Gothenburg Medical Society, the Swedish government (LUA-ALF), Swedish Cancer Society (2014) and the Swedish Research Council (08712).

References

