α3β1 integrin promotes radiation-induced migration of meningioma cells

VENKATESWARA RAO GOGINENI1, ARUN KUMAR NALLA1, RESHU GUPTA1, MEENA GUJRATI2, JEFFREY D. KLOPFENSTEIN3, SANJEEVA MOHANAM1 and JASTI S. RAO1,3

Departments of 1Cancer Biology and Pharmacology, 2Pathology and 3Neurosurgery
University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA

Received February 8, 2011; Accepted March 10, 2011

DOI: 10.3892/ijo.2011.987

Abstract. Cell motility is influenced by the microenvironment, signal transduction and cytoskeleton rearrangement. Cancer cells become resistant to these control mechanisms and gain the ability to move throughout the body and invade healthy tissues, which leads to metastatic disease. Integrins respond to context-dependent cues and promote cell migration and survival in cancer cells. In the present study, we analyzed the role of integrins in radiation-induced migration of meningioma cells. Migration and cell proliferation assays revealed that radiation treatment (7 Gy) significantly increased migration and decreased proliferation in two cell lines, IOMM-Lee and CH-157-MN. α3 and β1 integrins were overexpressed at both the protein and transcript levels after radiation treatment and a function-blocking α3β1 antibody inhibited the radiation-induced migration. Immunofluorescence studies illustrated the localization of α3 integrin and F-actin at the migration front of irradiated cells. Further, an increase in phosphorylation of FAK and ERK was observed, while both FAK phosphorylation inhibitor and FAK shRNA inhibited ERK phosphorylation and downregulated uPA and vinculin. In addition to the co-localization of FAK and ERK at the migration front, these FAK-inhibition results link the downstream effects of ERK to FAK. Correspondingly, U0126 quenched ERK phosphorylation and reduced the expression of molecules involved in migration. Furthermore, brain sections of the animals implanted with tumors followed by radiation treatment showed elevated levels of α3 integrin and active ERK. Taken together, our results show that radiation treatment enhances the migration of meningioma cells with the involvement of α3β1 integrin-mediated signaling via FAK and ERK.

Introduction

Migration is an essential cellular process which also drives disease progression in various pathological conditions including cancer. Cell migration is coordinated by the integration of transient signaling with changes in behavior and composition in response to gradients of chemokines, external stimuli, growth factors, and extracellular matrix (ECM) molecules. Migration marks the beginning of cancer cell invasion and subsequently allows cancer cells to enter lymphatic and blood vessels for dissemination into the circulation, resulting in metastatic growth in distant organs. As such, there is a need to understand how membrane receptors interact with their extracellular environment.

The morphology and cytoskeletal rearrangement of a migrating cell is established and maintained by synchronized events at the leading and trailing edges (1). Cell protrusions initiate binding to ECM by transmembrane receptors of the integrin family. Based on the external stimuli, cell type, and tumor microenvironment, migration can be regulated by different integrins (2). The extracellular domains of integrins provide traction to the migrating cells while the shorter cytoplasmic ends are coupled to the actin cytoskeleton via adaptor proteins and mediate signaling cascades during migration (3). Although integrins bind to various extracellular ligands, their differential expression in brain and epithelial tissues contribute to assorted roles in adhesion and migration (4). Overexpression of α3β1 integrin has been associated with increased formation of metastases of small cell lung carcinomas and colon carcinomas (5,6). Frequently, after integrins react to extracellular cues, focal adhesion kinase (FAK) is phosphorylated to function as a part of a cytoskeleton-associated network of signaling proteins (7), followed by diversification of the cascade.

External-beam radiation therapy (EBRT) is used either as an alternative to surgery or as an adjuvant to surgery in the treatment of meningiomas. However, recurrence of intracranial meningiomas following radiotherapy has been widely reported; to date, we do not have adequate information about the mechanisms underlying this recurrence (8,9). Radiation-induced migration, invasion, and metastases have also been reported in pancreatic cancer (10), prostate cancer (11), and glioblastomas (12,13). In our previous studies (14,15), we reported the increase in migration and invasion of meningioma cells with radiation...
treatment. Building on that foundation, in the current study, we further explored possible signaling mechanisms involved in radiation-induced migration of meningioma cells in vitro and in vivo.

Materials and methods

Cell culture conditions. We used the human meningioma IOMM-Lee and CH-157-MN cell lines, which were kindly provided by Dr Ian E. McCutcheon (University of Texas M.D. Anderson Cancer Center, Houston, TX) and Dr Yancey Gillespie (University of Alabama at Birmingham, AL), respectively. The IOMM-Lee and CH-157-MN luciferase cell lines were provided by Dr Randy L. Jensen (University of Utah, UT). Cells were maintained in Dulbecco’s modified Eagle’s medium (Mediatech, Herndon, VA) supplemented with 10% fetal bovine serum (FBS), 100 U/ml streptomycin, and 100 U/ml penicillin (Invitrogen, Carlsbad, CA). Cells were maintained in a humidified atmosphere containing 5% CO₂ at 37°C. Cells were treated with FAK inhibitor 14 (Tocris Bioscience, Ellisville, MO) and/or U0126 (EMD Biosciences, San Diego, CA) and incubated in complete medium for the indicated time periods. We obtained antibodies for pFAK (Tyr 397), pERK, vimentin, uPA, and gizzard-dehydrogenase (GAPDH) from Santa Cruz Biotechnology (Santa Cruz, CA). The talin-1 antibody was purchased from Cell Signaling Technology (Danvers, MA). Antibodies for α3, β1, and α3β1 were obtained from Millipore (Billerica, MA).

Transfection conditions. Transfection experiments were performed with FuGene HD transfection reagent as per the manufacturer’s protocol (Roche Applied Science, Madison, WI). Cells were transfected with FAK shRNA plasmid constructs in a ratio of 2 µg DNA to 3 µl reagent. After 6 h of transfection, complete medium was added and cells were incubated for another 24 h.

Radiation treatment. We used the RS 2000 Biological Irradiator (Rad Source Technologies, Inc., Boca Raton, FL), which was operated at 150 kV/50 mA, for the radiation treatments. All cells were given a single 7 Gy dose of radiation; this dose was administered either after 1 h of inhibitor treatment or 24 h after transfection.

MTT proliferation assay. IOMM-Lee and CH-157-MN cells (2x10⁴) were seeded in 6-well plates and irradiated as described above. Six hours later, cells were trypsinized, counted, and seeded at 1x10⁴ cells per well in 96-well plates (8 wells per treatment group). After the indicated period of incubation in conditioned medium, 20 µl of MTT reagent was added to the cells, followed by another 4 h of incubation at 37°C. Acid-isopropanol (0.04 M HCl/isopropanol) was added to all wells and mixed vigorously so that the formazan crystals dissolved effectively. Absorbance was measured on a microtiter plate reader (Model 680, Bio-Rad, Hercules, CA) with a test wavelength of 550 nm and a reference wavelength of 655 nm.

Migration assay. IOMM-Lee and CH-157-MN cells (1x10⁵) were seeded on 8-µm pore transwell inserts (Greiner Bio-One, Monroe, NC) and placed in a 12-well plate with complete medium on either side of the insert. The cells were irradiated and/or treated with FAK inhibitor and allowed to migrate through the membrane for 24 h. Cells remaining in the upper chamber of an insert and those that passed through the membrane and attached to the other side (belonging to the same treatment group) were fixed, stained with Hema-3, and counted under a light microscope as described previously (16). The total number of cells in a given treatment was calculated by counting the cells from both the sides of the membranes.

Purification and quantification of migration front. Purification of migrating front was carried out as described by Wang et al (17). Briefly, IOMM-Lee and CH-157-MN cells (2x10⁵) were seeded in 3-µm pore transwell inserts (Greiner Bio-One) placed in a 6-well plate with complete medium on either side of the insert. The cells were irradiated and allowed to migrate through the membrane for 24 h and then fixed with methanol. The cell bodies from the upper side of the membrane and lamellipodia from the lower side of the membrane were carefully scraped into lysis buffer containing a protease and phosphatase inhibitor cocktail. The quantification of relative migration front was also carried out as described (17). The inserts containing fixed cells were placed in crystal violet for 15 min and the excess dye was drained off. The cell bodies from the upper side were scraped and rinsed thoroughly with deionized water. The dye remaining in the migration front on the lower side was extracted by placing the membranes in 10% acetic acid and absorbance was measured at 590 nm.

Extraction of total RNA and RT-PCR. IOMM-Lee and CH-157-MN cells (1x10⁵) were seeded either in 6-well plates or on 8-µm pore transwell inserts (Greiner Bio-One) placed in a 12-well plate with complete medium on either side of the insert. The cells were irradiated and incubated or allowed to migrate through the membrane for 24 h. The cells remaining in the top side of the membrane as well as those that passed through the membrane and the cells from the 6-well plates were collected carefully, and the total RNA was extracted as described by Chomczynski and Sacchi (18). cDNA was synthesized using the Transcriptor First Strand cDNA Synthesis kit (Roche Applied Science, Madison, WI) and followed by PCR: 35 cycles of denaturation at 94°C for 1 min, annealing at 67°C for 30 sec, and extension at 72°C for 90 sec with specific primers for α3 and β1 integrins, talin-1, and GAPDH. The expected PCR products were visualized using ethidium bromide on 1.5% agarose gels. RT-PCR for GAPDH was performed to normalize input RNA.

Function blocking experiment. IOMM-Lee and CH-157-MN cells (1x10⁵) were seeded in 8-µm pore transwell inserts (Greiner Bio-One) placed in a 12-well plate with complete medium on either side of the insert. Prior to radiation treatment, anti-α3β1 or non-specific IgG antibodies (10 µg/ml) were added to appropriate wells. Afterwards, cells were irradiated and allowed to migrate through the membrane for 24 h. The cells remaining in the upper chamber from one insert and those that passed through the membrane and attached to the other side from another insert belonging to the same treatment group were fixed, stained using Hema-3, and counted under a light microscope as described previously (16). The total number of
cells in a given treatment was calculated by counting the cells from both the sides of the membranes.

Immunoprecipitation and Western blot analysis. Immunoprecipitation was carried out using the μMacs columns and protein G beads obtained from Miltenyi Biotec, Auburn, CA following manufacturer's instructions. Western blotting was performed as described earlier (15). Briefly, protein extracts were obtained from the IOMM-Lee and CH-157-MN cells using Tris-buffered lysis buffer. Cell lysates were also collected from untreated cells and vehicle control treated cells, that were cultured and maintained under similar conditions (mock). Equal amounts of protein were then subjected to SDS-PAGE followed by transfer of protein to polyvinylidene difluoride membranes (Bio-Rad). Membranes were then blocked and incubated overnight at 4°C with primary antibodies in blocking solution. Respective horseradish peroxidase (HRP)-conjugated secondary antibodies were washed with T-PBS and developed following an enhanced chemiluminescence protocol. The membranes were further probed for GAPDH, which was used as a loading control.

Immunofluorescence. IOMM-Lee and CH-157-MN cells (2x10⁶) were seeded onto 2-well chamber slides and irradiated with 7 Gy. Twenty-four hours after radiation treatment, cells were washed, fixed with 4% buffered paraformaldehyde, and permeabilized with freshly prepared 0.1% Triton X-100 containing 0.1% sodium citrate. Next, the cells were blocked with 2% BSA for 1 h followed by overnight incubation with antibodies for α3, FAK, and pERK (1:100 dilution) at 4°C. Next, the chamber slides were treated with fluororhor-phor-conjugated secondary antibodies (Invitrogen, Carlsbad, CA) at 1:200 dilution for 45 min at room temperature. Immunolocalization was accomplished by exposing sections to 0.05% DAPI as the chromogen. All microscopy studies were performed using a microscope attached to a CCD camera.

Animal studies. The Institutional Animal Care and Use Committee of the University of Illinois College of Medicine at Peoria (Peoria, IL, USA), approved all surgical interventions and post-operative animal care. Nude mice (4-6 weeks of age) were anesthetized, placed in a stereotactic frame (David Kopf Instruments, Tujunga, CA), and implanted with 1x10⁵ IOMM-Lee or CH-157-MN cells in 10 µl of PBS through a 27-gauge needle at 2 mm lateral and posterior to the bregma and 3 mm below the dura. After 10 days, the animals were separated into two treatment groups of 5 animals each for each cell line. One group implanted with each cell line was given two 3.5 Gy doses of radiation on alternate days by masking the whole body with lead sheets and leaving the skull region exposed. The animals were observed for 3 weeks, euthanized, and their brains were fixed in buffered formaldehyde. In another set of experiments, IOMM-Lee or CH-157-MN luciferase-expressing stable cells (1x10⁵) were implanted into nude mice (4-6 weeks of age). In one group, adherent cells irradiated with 7 Gy were implanted; in the other group, non-irradiated cells were infused. Tumor progression was monitored daily for one week with in vivo imaging.

Immunohistochemical analysis was performed using the protocol described elsewhere (15). The sections were blocked and later incubated overnight with anti-α3 and anti-pERK (1:100 dilution) at 4°C. Next, the sections were treated with HRP-conjugated secondary antibodies (1:200 dilution) for 30 min at room temperature. Immunolocalization was accomplished by exposing sections to 0.05% 3,3-diaminobenzidine tetrahydrochloride as the chromogen. The slides were counterstained with Mayer's hematoxylin and mounted. All microscopy studies were performed using a microscope attached to a CCD camera.

Statistical analysis. All data are presented as means ± standard error (SE) of at least three independent experiments (each performed at least in triplicate). One way analysis of variance (ANOVA) combined with the Tukey post-hoc test of means were used for multiple comparisons in cell culture experiments. Statistical differences are presented at probability levels of p<0.05, p<0.01, and p<0.001.

Results

Radiation treatment decreased cell proliferation and induced migration of meningioma cells. In general, radiation treatment damages genetic material leaving the cells either to repair themselves or to be unable to continue to grow. Therefore, we first assessed the influence of different doses of radiation treatment on cell proliferation of meningioma cells. Cell proliferation was found to be greater in the untreated cells as compared to the treated cells by almost 45% in the IOMM-Lee cells and by 40% the CH-157-MN cells in the first 24 h following radiation treatment at 10 Gy dose (Fig. 1A). However, there was no cell death among the treated cells at any given dose of radiation treatment (not shown). As the proliferation was significantly affected at higher doses of radiation, we continued our further experimentation by treating the cells at 7 Gy. Though the proliferation of irradiated cells was significantly less, cells seeded on the upper chamber of the 8-µm transwells showed an increase in migration after 24 h following radiation treatment as compared to the untreated groups in both cell lines. Among the total cells, the percent migrated cells in irradiated groups was more than 85 (±5%) in IOMM-Lee and CH-157-MN cells as compared to untreated cells 52 (±5%) and 55 (±3%), respectively, indicating a significant increase in the migration of irradiated cells (Fig. 1B). Further, to visualize the formation of lamellipodia and to separate the migration front from the rest of the cell body, we performed migration assays under similar conditions but used 3-µm pore transwells. Our assays showed that the cells did not pass through membranes. However, migrating fronts were observed on the other side of the membranes, and the irradiated cells showed greater migration fronts (Fig. 1C). The colorimetric assays revealed that the relative migration front was significantly more than 2-fold higher in the irradiated groups in both cell lines as compared to their untreated control groups (Fig. 1C).

α3β1 integrin and migration molecules were induced in irradiated cells. Phenotypic changes that facilitate migration are initially mediated by alterations in the expression of cell surface molecules, largely integrins. In addition to their roles in adhesion to ECM ligands or to receptors on adjacent cells, integrins also serve as transmembrane mechanical links from...
those extracellular contacts to the cytoskeleton inside cells and activate many intracellular signaling pathways. Considering these varied functions, we assessed the potential role of integrins in the radiation-induced migratory phenotype. We began by analyzing the levels of integrins. Our RT-PCR analysis on the expression of different integrins revealed a modulation among the different subunits of integrins. Nonetheless, on careful observation and considering the different possible heterodimeric combinations of integrins we focused our present study with \(\alpha_3 \) and \(\beta_1 \) integrins. Immunoblotting with whole cell lysates revealed a significant increase of greater than 2-fold in the \(\alpha_3 \) and \(\beta_1 \) integrins among the irradiated cells (7 Gy) as compared to the non-irradiated controls of both cell lines (Fig. 2A-B). Further, we evaluated the transcript profiles of \(\alpha_3 \) and \(\beta_1 \) integrins with RT-PCR and found comparable patterns of mRNA levels, with a more than 2-fold increase in irradiated cells (Fig. 2A-B). Additionally, the difference between control and irradiated cells at the protein level is comparatively larger in relation to the RNA in both cell lines, indicating increased translational turnover as well.

Next, we separated the cells that passed through the 8-\(\mu \)m transwells and performed RT-PCR assays. Our analysis demonstrated that these highly motile cells had increased expression of \(\alpha_3 \) and \(\beta_1 \) integrins in both untreated and irradiated groups, confirming their role in general. Nonetheless, the highest expression was found in the irradiated cells that passed through the membrane, suggesting the involvement of these integrins in radiation-induced migration of meningioma cells along with talin-1 and vinculin (not shown). Next, we sought to separate the leading front of the cells and to analyze the distribution of proteins involved in migration. Western blotting with lysates from the portions of cells remaining on either side of the 3-\(\mu \)m pore membrane showed a clear increase in the levels of talin-1 and vinculin on the lower side of the membrane, revealing preferential accumulation of these proteins at the leading edge (Fig. 2B). Next, we performed immunoprecipitation (IP) studies to identify the physical interactions among the \(\alpha_3 \beta_1 \) integrins. Western blot analysis on the precipitates showed that \(\alpha_3 \) integrin was able to pull down the \(\beta_1 \) integrin even as the reciprocal IP for \(\beta_1 \) also pulled down the \(\alpha_1 \) integrin in both cell lines indicating the interaction among the two subunits (Fig. 2C). Further, to examine the functional contribution of \(\alpha_3 \) and \(\beta_1 \) integrins for migration of meningioma cells, we performed blocking experiments. Our experiments showed that the anti-\(\alpha_3 \beta_1 \) integrin antibody brings about a significant blockade of migration, with 25% fewer cells migrating through the 8-\(\mu \)m pore membranes in irradiated groups, thereby confirming \(\alpha_3 \beta_1 \)

Figure 1. Radiation induces migration and decreases proliferation of meningioma cells. (A) IOMM-Lee and CH-157-MN cells (1x10^5) were seeded in 6-well plates and irradiated at different doses of radiation as indicated. Then, cells were trypsinized and seeded at 1x10^3 cells per well in 96-well plates. After the indicated hours of incubation, MTT reagent was added and followed by another 4 h of incubation and addition of acid-isopropanol. Absorbance was measured at 550 nm and the values were quantified. (B) IOMM-Lee and CH-157-MN cells (1x10^5) were seeded in 8-\(\mu \)m pore size transwell inserts, irradiated and allowed to migrate for 24 h. Later, cells that remained in the upper chamber and those that attached to the other side were fixed, stained and counted under a light microscope. The percentage of migrated cells was calculated. (C) IOMM-Lee and CH-157-MN cells (2x10^5) were seeded in 3-\(\mu \)m pore size transwell inserts, irradiated and allowed to migrate through the membrane for 24 h. Cells were then fixed and placed in crystal violet; cell bodies that remained on the top side of the membranes were scraped, the dye retained by the migration front on the lower side was extracted in 10% acetic acid, absorbance was measured at 590 nm, and the relative migration front was plotted. Values are mean ± SD from three independent experiments. *Statistically different compared to control and radiated groups (P<0.05).
integrins role in radiation-induced migration of meningioma cells (Fig. 2D). The cells treated with non-specific IgG did not show any change in migration pattern as compared to the respective untreated cells.

α3 integrin and F-actin localize at the leading edge of the migrating cells. In migrating cells, it has been established that motility is accomplished by the formation of new adhesions at the leading edge rather than by movement of existing focal adhesions. Thus, in order to find the functional implication of integrins in the new adhesions, we carried out immuno-fluorescence studies. Also, since F-actin polymerization is a hallmark event in the movement of cells, the cellular localization of F-actin and α3 integrin within chemically fixed cells was carried out with primary antibodies that recognize proteins in their native conformation. Using fluorescent microscopy of motile meningioma cells, membrane ruffles were clearly visible as waves that move centripetally from the leading edge. CH-157-MN cells exhibited broad lamellipodia with numerous ruffles evenly distributed over the cell, whereas IOMM-Lee cells bore smooth lamella with few if any ruffles (Fig. 3A-B).

Both cell lines treated with radiation showed bright fluorescence (pink colored), which indicates the accumulation of F-actin filaments at the migrating fronts, while the untreated cells showed uniform distribution throughout the cells (Fig. 3A). Membrane ruffles were enriched with bundles of actin filaments showing the characteristic appearance of stress fibers. Cells in control groups exhibited fewer and significantly smaller bundles of actin filaments. Likewise, the immunofluorescence for α3 integrin revealed clear localization (green color) at the membrane ruffles of leading edges and focal points of irradiated groups in both cell lines (Fig. 3B). The untreated cells showed a low level of expression with even distribution across the cell lamella, lacking any obvious clustering or localization. This result was significant because it further demonstrated that migration adhesions were formed while accumulating integrin and F-actin components at the migrating end.

FAK signaling mediates radiation-induced migration of cells. One of the most prominent changes reported upon integrin clustering is the phosphorylation of non-receptor tyrosine kinases, including the protein tyrosine kinase FAK, and subsequent activation of downstream effector molecules. Phosphorylation at tyrosine 397 on FAK correlates with its increased catalytic activity (19,20) and appears important for the tyrosine phosphorylation of focal complex associated proteins. Consequently, to explore the role of integrins in signaling, we first performed Western blotting for tyrosine phosphorylation on FAK and observed that Tyr-397 was phosphorylated in the irradiated groups of both cell lines (Fig. 4A). FAK phosphorylation was found to be more than 2-fold greater in irradiated cells as compared to the respective non-irradiated controls (Fig. 4A). FAK phosphorylation was found to be more than 2-fold greater in irradiated cells as compared to the respective non-irradiated controls (Fig. 4A). Subsequently, to evaluate the role of active FAK in radiation-induced migration, we used a corresponding phosphorylation inhibitor and analyzed for migration and downstream molecules in the signaling pathway. Migration assays with FAK inhibitor-treated cells demonstrated that FAK inhibitor significantly blocked migration.
in irradiated cells; only 10% of the inhibitor and radiation-treated IOMM-Lee and CH-157-MN cells migrated through the 8-µm transwells as compared to 83% and 87% of the IOMM-Lee and CH-157-MN cells treated with radiation alone (Fig. 4B). Western blot analysis of inhibitor-treated cell lysates demonstrates that the inhibitor significantly blocked FAK phosphorylation and ERK activation as well as decreased expression of talin-1 in both cell lines, which all indicate a direct role of FAK phosphorylation in cell migration (Fig. 4C). Furthermore, knockdown of FAK with siRNA also showed a
similar effect on ERK activity and talin-1 expression (Fig. 4D). Interestingly, FAK phosphorylation inhibitor and siRNA both blocked the expression of uPA in both cell lines (Fig. 4C-D).

ERK acts as a downstream effector to FAK in migrating cells.

Our studies on FAK phosphorylation indicated that ERK is a downstream effector of FAK because ERK phosphorylation was affected by FAK activation. Hence, we performed double immunofluorescence studies. Our studies revealed co-localization of active ERK and FAK, showing yellow fluorescence at the leading edges of migrating cells in irradiated cells (Fig. 5A). The cells treated with FAK phosphorylation inhibitor did not show active ERK on the membrane. In addition, the irradiated cells treated with the inhibitor showed altered morphology and cell shape with much less cytoplasmic content compared to that of the other three treatment groups (Fig. 5A). Consequently, we performed MTT assays on inhibitor-treated cells to check their rate of cell proliferation. Survival was significantly affected in cells treated with radiation and the inhibitor, and this group had a 4-fold decrease in absorbance at 72 h post-treatment, which implies cell death (Fig. 5B). Although there was a decrease in proliferation among the cells treated with the inhibitor alone, the change was not significant. To further confirm the role of ERK in migration, we treated the cells with an ERK phosphorylation inhibitor, U0126. Western blot analysis of cell lysates treated with U0126 demonstrated no effect on the phosphorylation of FAK; nevertheless, it markedly inhibited the phosphorylation of ERK and the expression of talin-1 and uPA in both cell lines, confirming the downstream role of ERK to FAK (Fig. 5C). Treatment with U0126 had a significant decrease of more than 2-fold in the phosphorylation of irradiated cells (Fig. 5D). Phase contrast microscopy of the irradiated cells treated with U0126 also showed altered morphology. However, the cells treated with the inhibitor alone were also affected to some extent (data not shown).

Irradiated tumor sections exhibit increased expression of α3 integrin and pERK. To correlate the in vitro results with in vivo experiments, we analyzed the expression of α3 integrin and pERK in the pre-established tumor tissues using immunohistochemical staining of the paraffin-embedded sections. Antibodies against α3 integrin and pERK showed strong immunoreactivity in the irradiated tumor tissue sections of IOMM-Lee and CH-157-MN meningioma intracranial tumors raised in nude mice. In accord with the in vitro observations, immunoreactivity for α3 integrin and pERK was low in the untreated tumors (Fig. 6A). Tumor formation and tumor volume were determined using H&E staining. Interestingly, tumor volumes were greater in the irradiated animals as compared to the respective controls (Fig. 6B). The apparent increase in
tumor size among the irradiated animals is likely to be a regenerative response by the tumor. Soon after radiation treatment, cells are known to demonstrate a variable lag period before the onset of augmented tumor growth (21). On average, accelerated growth in existing clonogens of head and neck cancers were reported to proliferate at a rate 15 to 20 times faster than growth prior to treatment (22,23). Additionally, radiation treatment induces hypoxia in the tumors, and they re-oxygenate gradually. These tumors were expected to contain a high proportion of hypoxic, viable cells capable of active repair, and this finding would put emphasis on the radioresistance of the tumors.

In another in vivo approach, we analyzed the migration of irradiated cells. In contrast to the pre-established tumors, intracranial implantation of irradiated, luciferase-expressing cells followed by in vivo imaging at regular intervals did not illustrate any significant change in migratory behavior of either cell line (Fig. 6C-D). The photon counts were neither significantly different nor were satellite loci of photons observed (Figs. 6C-D). In addition, the mice implanted with irradiated cells did not show any signs of tumor after 3 weeks, while tumor burden in the animals treated with non-irradiated cells were marked with a decrease in body weight. These observations demonstrated that irradiated cells could not establish tumors upon implantation whereas the irradiation of pre-established tumors revealed the expression of migration mediators.

Discussion

Besides rapid proliferation, adoptive strategies shown by tumor cells contribute significantly to malignant progression. Migration, a highly complex and regulated process in which intracellular and extracellular signals run adjacent to each other and produce a coordinated response, is one such capability. The ability to block the migratory and invasive capacity of tumor cells offers a new approach to treat patients with malignant disease. However, metastasis is a complex process involving the coordination of several signal transduction pathways that allow cancer cells to proliferate, to remodel their surrounding environment, to invade and migrate through new tissues, and to differentiate. Moreover, migration contributes to pathologies, including vascular disease and chronic inflammatory diseases. Radiation therapy is an essential component of treatment for many patients with intracranial tumors. It can be curative for some patients and
prolongs survival for most patients. Nonetheless, our previous studies (15,24) and the current study reveal that radiation treatment increases migration with a decrement in meningioma cell proliferation. Not surprisingly, TUNEL analysis of the irradiated cells did not reveal cell death (not shown), and illustrates the fact that the irradiated cells took time to repair damaged DNA and continue to grow. Consistent with this observation, an apparent increase in the migration and invasion of irradiated glioma cells was reported 24 h after irradiation in a dose-dependent manner (13). Besides, there is accumulating evidence that invasive glioma cells show a decreased proliferation rate and a relative resistance to apoptosis, which in turn, contributes to radiotherapy-induced resistance. Extracellular matrix and mitogens [e.g., transforming growth factor β1 (TGF-β1)] that supports migratory phenotypes and retards the growth rate of the cell population showing similar effects on the balance between cell motility and proliferation of glioma and meningioma cells have been reported (25,26).

To a large extent, cancer cell migration is controlled by integrins, matrix-degrading enzymes, and cell-cell adhesion molecules. For a cell to advance, newly extended protrusions must attach to the surroundings and stabilize, providing a means of traction for the cell to pull itself forward. The physical component of traction is provided by the action of integrins in adhesions. The role of integrins in cell movement includes a signaling aspect as well as a structural aspect (3). Integrin-mediated signals enable cancer cells to reorient and move into foreign microenvironments. Screening for the modulation of integrins revealed observable changes in the integrin levels on radiation treatment. However, with an idea to restrict ourselves to specific integrins we looked at the possible heterodimeric combinations of integrins and our results also show that the α3β1 integrin was overexpressed and differentially localized to the migrating edges. The α3β1 integrin is particularly interesting as it is a multiple ligand, promiscous receptor and binds to different substrates. However, since in many cell types α3β1 integrin does not appear to be involved in adhesion to the extracellular matrix, its matrix-independent functions have a great significance. Recent studies revealed that integrin α3β1 plays an important role in invasion and metastasis of cancer (6,27). Moreover, ligand-independent functions of integrins were shown to activate survival signaling in the cancer cells (4,28). Our study emphasized that besides a marked overexpression of α3β1 integrin, blocking it with antibody impeded the radiation-induced migration of meningioma cells in the absence of laminin, further confirming the ligand-independent role of α3β1 integrin in migration. Earlier studies on glioma demonstrated enhanced migration and invasiveness of sublethally irradiated glioma cells with the involvement of α5β3 integrin but not the α5β1 integrin, which points to recruitment of specific integrins during radiation-induced migration (13). Recent data suggest that actin polymerization drives adhesion assembly. Comet-like actin tails associate with integrins near the leading edge and induce clustering of β1 integrin at the tip of newly formed filopodia (29).

Integrins lack intrinsic enzymatic activity and, therefore, regulate signaling cascades through the recruitment and activation of non-receptor kinases. Usually, FAK becomes phosphorylated in vivo after integrins detect the extracellular cues and functions as part of a cytoskeleton-associated network of signaling proteins (30). Evidence indicates that phosphorylation of FAK is essential for cell migration (7). In the present study, we also observed FAK phosphorylation in the irradiated cells. Blockade of FAK phosphorylation and knockdown of FAK not only impeded migration, it in fact altered cell morphology and induced cell death in irradiated cells. Phosphorylation of FAK at Tyr 397 is an autophosphorylation event and creates a motif that is recognized by various SH2 domain-containing proteins that differentially bind to FAK in response to particular cell stimuli and transduce the signal (30).

Although FAK is known to have several downstream targets, it is one of several connections that lead to the activation of Ras and the ERK2/mitogen-activated protein kinase cascade (31). In addition, integrins play an important role in regulating the efficiency of the RTK/Ras/Erk pathway at different loci (32). Therefore, we probed for FAK-ERK crosstalk and found the activation of ERK with FAK phosphorylation. Further, blockade of ERK activation by U0126 did not alter FAK phosphorylation, confirming the downstream activity of ERK to FAK. Analogous to our findings, FAK-mediated activation of ERK for eosinophil migration during microbial infections has been reported (33). On the other hand, signaling events downstream of the uPAR-β1 integrin complex promoted FAK phosphorylation and led to the activation of the Ras-ERK pathway and contributed to invasion by increasing pericellular proteolysis (34,35). ERK activation and Cas/Crk coupling were shown to regulate cell migration and suppress apoptosis during invasion of the extracellular matrix (36). Our results showed that the uPA expression regulates the FAK-ERK pathway, and we believe that the radiation-induced expression of uPA may assist in pericellular proteolysis and aid in the migration and invasion of meningioma cells in vivo. Also, radiation induced a pro-migratory profile in metalfoproteolytic activity and dissemination of glioma cells in the rat 9L glioma model in vivo (13).

The results of our in vivo experiments were interesting as radiation treatment of pre-established tumors showed strong immunoreactivity with α3 integrin and pERK antibodies whereas the irradiated cells could not form tumors. We thus propose that irradiation of pre-implanted tumor cells may enhance the invasive behavior of malignant meningioma cells. We also hypothesize that if the irradiated cells had been cultured in vitro after radiation treatment to allow for a recovery period, then the attempts to implant a tumor would have been successful. Furthermore, therapeutic field irradiation might also create a permissive environment for migrating/invading meningioma cells in the adjacent, non-tumor-bearing brain. In summary, integrin-mediated signaling controls the production and organization of actin filaments via downstream effectors. This vast signaling network also includes feedback loops that potentially regulate integrin aggregation and activation, and adhesion assembly and disassembly during migration. Although the inhibitors of migration and invasion result in modest activity when administered alone, they may prevent irradiation-induced dissemination of cancer cells when administered during radiotherapy. However, in accordance to our results, intervention with cell motility resulting in increased vulnerability to apoptosis has been reported (36,37), indicating that this dynamic relationship can potentially be
exploited as an anti-invasive treatment paradigm for cancer. Our study also provides an indirect explanation for the relapse of meningioma after radiotherapy.

Acknowledgements

We thank Shellee Abraham for manuscript preparation. We thank Diana Meister and Sushma Jasti for manuscript review. Funding: The study was supported by Award Number NS061835 (J.S.R.) from the National Institute of Neurological Disorders and Stroke (NINDS). Contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

References

