Genetics and molecular epidemiology of multiple myeloma: The rationale for the IMMEnSE consortium (Review)

ALESSANDRO MARTINO1*, JUAN SAINZ2*#, GABRIELE BUDA4*, KRZYSZTOF JAMROZIAK5, RUI MANUEL REIS6,12, RAMÓN GARCÍA-SANZ7, MANUEL JURADO2,3, RAFAEL RÍOS2,3, ZOFIA SZEMRAJ-ROGUCKA5, HERLANDER MARQUÉS6, FABIENNE LESUEUR8, VICTOR MORENO9, ENRICO ORCIUOLO4, FEDERICA GEMIGNANI10, STEFANO LANDI10, ANNA MARIA ROSSI10, CHARLES DUMONTET11, MARIO PETRINI4, DANIELE CAMPA1 and FEDERICO CANZIANI

1 Genomic Epidemiology Group, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; 2 Genomic Oncology Area, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), 18007 Granada; 3 Department of Hematology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; 4 Department of Oncology, Transplants and Advanced Technologies, Section of Hematology, University of Pisa, I-56100 Pisa, Italy; 5 Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland; 6 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal; 7 University Hospital of Salamanca, Universidad de Salamanca-Centro de Investigación del Cáncer, 37007 Salamanca, Spain; 8 Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France; 9 IDIBELL-Catalan Institute of Oncology, CIBERESP and University of Barcelona, Barcelona 08907, Spain; 10 Department of Biology, Section of Genetics, University of Pisa, I-56126 Pisa, Italy; 11 INSERM UMR 1052/CNRS 5286, Laboratoire de Cytologie Analytique, Faculté de Medecine Rockefeller, Université Claude Bernard Lyon I, Lyon, France; 12 Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil

Received August 29, 2011; Accepted October 13, 2011

DO: 10.3892/ijo.2011.1284

Abstract. There is strong evidence suggesting the presence of a genetic component in the aetiology of multiple myeloma (MM). However no genetic risk factors have been unequivocally established so far. To further our understanding of the genetic determinants of MM risk, a promising strategy is to collect a large set of patients in a consortium, as successfully done for other cancers. In this article, we review the main findings in the genetic susceptibility and pharmacogenetics of MM and present the strategy of the IMMEnSE (International Multiple Myeloma Research) consortium in contributing to determine the role of genetic variation in pharmacogenetics and in MM risk.

Contents

1. Introduction: multiple myeloma
2. Lifestyle, environmental and occupational-related risk factors in multiple myeloma
3. Genetic risk factors in multiple myeloma
4. Pharmacogenetics of multiple myeloma
5. Limits and perspectives: the rationale for the IMMEnSE consortium
6. Future directions

Abstract. There is strong evidence suggesting the presence of a genetic component in the aetiology of multiple myeloma (MM). However no genetic risk factors have been unequivocally established so far. To further our understanding of the genetic determinants of MM risk, a promising strategy is to collect a large set of patients in a consortium, as successfully done for other cancers. In this article, we review the main findings in the genetic susceptibility and pharmacogenetics of MM and present the strategy of the IMMEnSE (International Multiple Myeloma Research) consortium in contributing to determine the role of genetic variation in pharmacogenetics and in MM risk.

1. Introduction: multiple myeloma

Multiple myeloma (MM) is a malignancy of plasma cells usually infiltrating the bone marrow, associated with the production of a monoclonal immunoglobulin (M protein) which can be detected in the blood and/or urine (1). The uncontrolled growth of myeloma cells has many consequences, including skeletal destruction, bone marrow failure, suppression of normal immunoglobulin production and renal insufficiency (2).

MM arises worldwide at an age-standardized (ASR) rate of 1.5 new cases every 100,000 people per year and is responsible of an ASR of mortality of 1 in 100,000 subjects per year. In Europe the ASR incidence is 2.9 new cases every 100,000 people, ranging from 4.2 in Luxembourg to 0.9 in Moldova, and is about 1.5-fold higher in males (ASR=2.9) than in females (ASR=2.0) (3-5). The highest annual incidence of MM has been found in African Americans followed either by Europeans or American Caucasians and Asians who present the lowest incidence even when they live in Western societies (6-11).
overall incidence rates range from a high of 13.1/100,000 per year for black males to 2.9/100,000 per year for white females (8,11). MM is common in the elderly, with incidence rates increasing with age, it occurs rarely before 40 years (12) and presents an extremely low frequency in young people (9,13,14). It has been shown that MM could evolve from an asymptomatic premalignant condition termed monoclonal gammopathy of undetermined significance (MGUS) (15,16). The frequency of MGUS is over 3% in the population above the age of 50 years and over 5% in persons aged 70 years or older (17,18). This condition seems to be related to progression to MM or other plasma cell disorders at a steady rate of 1.5% per year, and after >25 years of observation about 15-17% of MGUS subjects develop MM (19). In some patients, an intermediate asymptomatic, but more advanced premalignant stage, defined as smouldering multiple myeloma (SMM) could be clinically recognized (20).

MM diagnosis requires 10% or more clonal plasma cells on bone marrow examination or a biopsy proven plasmacytoma and evidence of end-organ damage such as hypercalcemia, renal insufficiency, anaemia or bone lesions, defined as CRAB (calcium elevation, renal insufficiency, anaemia and bone lesions criteria) that can be related to the underlying plasma cell disorder (1,21).

Symptomatic (active) disease should be treated immediately, whereas asymptomatic myeloma requires only clinical observation, since early treatment with conventional chemotherapy has shown no benefit. The aim of the therapy is represented by the achievement of the best possible response: complete response (CR) or very good partial response (VGPR) (22-24). The level of response, and in particular achievement of CR, seems to be associated with an improved long-term outcome. Overall survival (OS) in myeloma has improved significantly in the last decade with the emergence of thalidomide (25), bortezomib (26) and lenalidomide (27). Bortezomib is a first-in-class proteasome inhibitor (28); the complete mechanism of action of thalidomide and lenalidomide is still unclear but both of them are immune-modulatory drugs (29). Treatment strategies include the use of therapy with thalidomide, lenalidomide or bortezomib plus hematopoietic autologous stem-cell transplantation (ASCT) for patients under the age of 65 years, who do not have substantial heart, lung, renal or liver dysfunction. Alternatively, the use of combination therapy including steroids and/or alkylating agents together with one or two of the new drugs (thalidomide, bortezomib and lenalidomide) is more appropriate for elderly patients or those with severe co-morbidities. The role of maintaining therapy is still a matter of debate (30).

2. Lifestyle, environmental and occupational-related risk factors in multiple myeloma

MM risk is clearly related to age (31), gender, ethnicity (11) and the presence of pre-malignant conditions such as MGUS (17). Additional factors have been suggested to have an effect on the risk of developing MM. There is epidemiological evidence supporting an increased risk of MM among obese people and for those who have a low intake either of fish or vegetables (32-36). A number of cohort and case-control studies have also described a positive relationship between MM and patients either with autoimmune diseases (37,38) or viral infections (39-41). Many other studies have investigated the relationship between exposure to toxins and increased risk of MM, with controversial results (42-46). While some studies have shown that exposures to pesticides (47-49), organic solvents (50), hairdresser’s products (51), rubber (52) are associated with an increased risk of MM, other studies have not found a significant relationship (48,53-55). Researchers have also examined whether smoking (56), alcohol consumption (57) or ionizing radiation exposures (58) affected the risk of MM but, again, obtained data were largely inconsistent (59-61).

3. Genetic risk factors in multiple myeloma

Converging evidence of MM in monozygotic twins (62) and familial aggregation of MM (63-69) strongly suggest that MM aetiology has a robust genetic component. For many other types of tumors, association studies, including Genome-Wide Association Studies (GWAS), have shown that genetic risk is influenced by the effect of the co-inherited common genetic low-penetrance variants. Single Nucleotide Polymorphisms (SNPs) are the major source of genetic variation in humans and thought to be responsible, at least in part, for the individual differences in genetic susceptibility to complex diseases as tumors. This is likely to be the case for MM as well. Several genes belonging to different pathways have been associated with MM risk, although the results were controversial. Table I summarizes the positive associations reported in the literature between genetic variants and MM susceptibility in candidate gene studies. Up to date, a GWAS on MM risk is still lacking.

Polymorphisms in cytokine genes. The first study on SNPs in MM genetic susceptibility was reported in 2000 by Zheng et al and investigated the role of 3 SNPs, respectively, in TNF-α (-308G/A, rs1800629), IL6 (-174G/C, rs1800795) and IL1B (+3954T/C, rs1143634) genes as well as a VNTR polymorphism in the IL1RN gene. In this study, no evidence of association between any of the studied genetic variants and MM risk was reported (70).

In general, cytokine-encoding genes have been extensively investigated (70-86), due to the high degree of polymorphisms characterized in these genes and to their important role in the bone marrow microenvironment and B-cell development.

One of the most investigated genetic loci in MM risk is the -308G/A SNP (rs1800629) which belongs to the TNF-α gene. While no association between MM risk and SNP -308G/A (rs1800629) of TNF-α gene was found in a previous study (70), Davies and colleagues showed a significantly higher percentage of heterozygous individuals for both TNF-α -308G/A SNP and LT-α +252A/G (rs909253) SNP among MM cases in respect to controls, suggesting that the higher TNF-α producers had a 2-fold higher risk to develop MM (78). In a subsequent study, Morgan et al failed to confirm the association between TNF-α -308G/A and LT-α +252A/G haplotype and MM risk, evidencing on the other hand an association between the TNF-α -308A allele and a decreased risk to develop MM (79). The association of the TNF-α -308A allele with a reduced risk to develop MM has been confirmed by two recent studies (73,83).

Investigations of SNPs in genes belonging to the IL6 pathway are intriguing since IL6 and IL6-mediated signaling are thought
Table I. Associations of SNPs with MM risk.

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Position/Function</th>
<th>Cases</th>
<th>Controls</th>
<th>Description of association</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL1A</td>
<td>rs1800587 (-889 C/T)</td>
<td>5'UTR</td>
<td>74</td>
<td>160</td>
<td>Heterozygotes for the IL1A -889 variant showed an increased risk to develop MM (OR, 5.66; 95% CI, 2.22-12.6; p<0.001)</td>
<td>(77)</td>
</tr>
<tr>
<td>IL1B</td>
<td>rs1143627 (-31 T/C)</td>
<td>5'Near gene</td>
<td>348</td>
<td>800</td>
<td>C/C homozygotes for the IL1B -31C/T SNP had a 1.37-fold increased risk of MM (OR, 1.37; 95% CI, 1.05-1.80; p=0.02)</td>
<td>(85)</td>
</tr>
<tr>
<td></td>
<td>rs16944 (-511 C/T)</td>
<td>5'Near gene</td>
<td>74</td>
<td>160</td>
<td>Homozygotes for the IL1B -511C allele showed a decreased risk to develop MM (OR, 0.378; 95% CI, 0.19-0.74; p<0.001)</td>
<td>(77)</td>
</tr>
<tr>
<td>IL1RN</td>
<td>rs315952 (Mspal 111100 C/T)</td>
<td>Synonymous</td>
<td>74</td>
<td>160</td>
<td>Homozygotes for the IL1RN Mspal +11100 C allele showed a decreased risk to develop MM (OR, 0.057; 95% CI, 0.019-0.186; p<0.001)</td>
<td>(77)</td>
</tr>
<tr>
<td>IL4R</td>
<td>rs2107356</td>
<td>5'Near gene</td>
<td>127a</td>
<td>545</td>
<td>Homozygotes T/T for the IL4R rs2107356 variant had a significantly increased risk to develop MM (OR, 1.91; 95% CI, 1.08-3.38)</td>
<td>(86)</td>
</tr>
<tr>
<td>IL6</td>
<td>rs1800796 (-572 G/C)</td>
<td>5'Near gene</td>
<td>150</td>
<td>126</td>
<td>Carriers of the IL6 -572 C allele showed an increased risk to develop MM (OR, 2.4; 95% CI, 1.2-4.7; p<0.05)</td>
<td>(75)</td>
</tr>
<tr>
<td>IL6R</td>
<td>rs6684439</td>
<td>Intrinsic</td>
<td>82</td>
<td>164</td>
<td>The T/T homozygotes for the IL6R rs6684439 SNP showed a significant 3-fold increased risk to develop MM and a border line global p-trend (OR, 2.9; 95% CI, 1.2-7.0; p=0.048)</td>
<td>(82)</td>
</tr>
<tr>
<td></td>
<td>rs7529229</td>
<td>Intrinsic</td>
<td>82</td>
<td>164</td>
<td>The C/C homozygotes for the IL6R rs7529229 SNP showed a significant increased risk to develop MM and a near to significance global p-trend (OR, 2.5; 95% CI, 1.1-6.0; p=0.08)</td>
<td>(82)</td>
</tr>
<tr>
<td></td>
<td>rs2228145 (D358A)</td>
<td>Missense</td>
<td>82</td>
<td>164</td>
<td>The C/C homozygotes for the rs2228145 showed a significant 2.5-fold higher risk to develop MM and a border line global p-trend (OR, 2.5; 95% CI, 1.1-6.0; p=0.038)</td>
<td>(82)</td>
</tr>
<tr>
<td>FCGR2A</td>
<td>rs1801274 (H167R)</td>
<td>Missense</td>
<td>127a</td>
<td>545</td>
<td>Homozygotes G/G for the missense variant rs1801274 showed a significantly increased risk of MM (OR, 1.95; 95% CI, 1.06-3.60)</td>
<td>(86)</td>
</tr>
<tr>
<td>TNF-α</td>
<td>rs1800629 (-308 G/A)</td>
<td>5'Near gene</td>
<td>210</td>
<td>218</td>
<td>Carriers of the TNF-α -308 A allele showed a minor risk to develop MM in respect to G/G genotypes when compared among cases and controls (OR, 0.55; 95% CI, 0.33-0.91; p=0.02)</td>
<td>(73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>181</td>
<td>233</td>
<td>Carriers of the A allele for the TNF-α -308 SNP showed a significantly decreased risk to develop MM (OR, 0.58; 95% CI, 0.36-0.81; p=0.01)</td>
<td>(79)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td>141</td>
<td>Carriers of the TNF-α -308 A allele showed a decreased risk to develop MM in respect to G/G homozygotes when compared in cases and controls (OR, 0.40; 95% CI, 0.18-0.90; p=0.027)</td>
<td>(83)</td>
</tr>
<tr>
<td>TNF-α/LT-α</td>
<td>rs1800629 (-308 G/A)</td>
<td>5'Near gene</td>
<td>94</td>
<td>141</td>
<td>Carriers of the rare haplotype for the TNF-α /LT-α 252 AA/AA showed a decreased risk to develop MM (OR, 0.43; 95% CI, 0.19-0.97; p=0.041)</td>
<td>(83)</td>
</tr>
<tr>
<td></td>
<td>rs909253 (+252 A/G)</td>
<td></td>
<td>198</td>
<td>250</td>
<td>Heterozygotes for TNF-α /LT-α 252 haplotype (GA/AG) showed a significantly increased risk to develop MM compared to the most frequent haplotype (OR, 2.05; 95% CI, 1.26-3.35; p=0.003)</td>
<td>(78)</td>
</tr>
</tbody>
</table>

Refers to: (75) for IL6, (86) for IL4R, (77) for IL1A, (82) for IL1B, (79) for TNF-α, (83) for TNF-α/LT-α.
<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Position/Function</th>
<th>Cases</th>
<th>Controls</th>
<th>Description of association</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymorphisms in cell signaling and growth factors genes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR7</td>
<td>rs3136685</td>
<td>Intronic</td>
<td>103(^a)</td>
<td>475</td>
<td>The CCR7 rs3136685 G allele showed a significant protective effect on MM risk (OR, 0.38; 95% CI, 0.24-0.64; p = 0.0004) and a significant p-trend (p = 0.0001), not confirmed after permutation test (p = 0.1611)</td>
<td>(94)</td>
</tr>
<tr>
<td>CD4</td>
<td>rs11064392</td>
<td>5' Near gene</td>
<td>108(^a)</td>
<td>482</td>
<td>In the CD4 gene region located on 12p13-q13, a total of 6 tag SNPs in 2 genes (CD4 and LAG3) were significantly associated with MM risk (p-trend < 0.05). The strongest association was observed for the G carriers of the CD4 variant rs11064392 (OR, 2.53; 95% CI, 1.59-4.02)</td>
<td>(71)</td>
</tr>
<tr>
<td>IGF1</td>
<td>rs7965399</td>
<td>3' Near gene</td>
<td>82</td>
<td>2624</td>
<td>Heterozygotes C/T for the IGF1 rs7965399 variant showed a significant trend for associations with an increased risk of MM (OR, 1.8; 95% CI, 0.9-3.6; p = 0.0015)</td>
<td>(82)</td>
</tr>
<tr>
<td></td>
<td>rs2195239</td>
<td>Intronic</td>
<td>82</td>
<td>2624</td>
<td>The G/G homozygotes for the IGF1 rs2195239 variant showed a strongly significant p-global for associations with an increased risk of MM (OR, 2.6; 95% CI, 1.2-5.5; p = 0.0001)</td>
<td>(82)</td>
</tr>
<tr>
<td></td>
<td>rs2373722</td>
<td>Intronic</td>
<td>82</td>
<td>2624</td>
<td>Heterozygotes C/T for the IGF1 variant rs2373722 showed a significant global p-trend for association with a decreased risk of MM (OR, 0.5; 95% CI, 0.2-1.1; p = 0.0001)</td>
<td>(82)</td>
</tr>
<tr>
<td>IGFBP3</td>
<td>rs3110697</td>
<td>Intronic</td>
<td>82</td>
<td>2624</td>
<td>The A/A homozygotes for the IGFBP3 rs3110697 SNP showed a significant 2-fold higher risk to develop MM and a border line global p-trend (OR, 2.0; 95% CI, 1.1-3.7; p = 0.083)</td>
<td>(82)</td>
</tr>
<tr>
<td>IKB-(\alpha)</td>
<td>rs2233406</td>
<td>5' Near gene</td>
<td>250</td>
<td>271</td>
<td>Carriers of the IKB-(\alpha) rs2233406 T allele were underrepresented in MM patients, with a significant protective effect on MM risk (OR, 0.69; 95% CI, 0.50-0.96; p = 0.024), although if not confirmed after permutation test</td>
<td>(93)</td>
</tr>
<tr>
<td></td>
<td>rs3138054</td>
<td>Intronic</td>
<td>157</td>
<td>196</td>
<td>G/G homozygotes for the IKB-(\alpha) rs3138054 variant showed a decreased risk to develop MM (OR, 0.61; 95% CI, 0.38-0.68; p = 0.042)</td>
<td>(92)</td>
</tr>
<tr>
<td></td>
<td>rs2233419</td>
<td>Intronic</td>
<td>157</td>
<td>196</td>
<td>C/C homozygotes for the IKB-(\alpha) rs2233419 variant showed a decreased risk to develop MM (OR, 0.63; 95% CI, 0.39-1.00; p = 0.048)</td>
<td>(92)</td>
</tr>
<tr>
<td>HGF</td>
<td>rs17501108</td>
<td>3' Near gene</td>
<td>103(^a)</td>
<td>475</td>
<td>The HGF rs17501108 T allele was associated with a significantly increased risk of MM (OR, 2.75; 95% CI, 1.69-4.48; p = 4.6x10(^{-5})) and a significant p-trend (p = 5x10(^{-5})), almost confirmed after permutation test (p = 0.074)</td>
<td>(94)</td>
</tr>
<tr>
<td>HPSE</td>
<td>rs4693602</td>
<td>Intronic</td>
<td>44</td>
<td>103</td>
<td>The A/A individuals for the HPSE rs4693602 were more frequent between MM cases in respect to controls (p = 0.026)</td>
<td>(96)</td>
</tr>
<tr>
<td>IRS1</td>
<td>rs1801278</td>
<td>Missense</td>
<td>82</td>
<td>164</td>
<td>Heterozygotes for the IRS1 rs1801278 SNP showed a significantly increased risk of MM respect to C/C homozygotes (OR, 4.3; 95% CI, 1.3-12.1)</td>
<td>(82)</td>
</tr>
<tr>
<td>(G971A)</td>
<td>rs17208470</td>
<td>Intronic</td>
<td>82</td>
<td>164</td>
<td>Heterozygotes for the IRS1 rs17208470 SNP showed a significantly increased risk of MM respect to most frequent homozygotes (OR, 2.2; 95% CI, 1.1-4.5)</td>
<td>(82)</td>
</tr>
<tr>
<td>RIPK1</td>
<td>rs9391981</td>
<td>Intronic</td>
<td>108(^a)</td>
<td>482</td>
<td>Carriers of the RIPK1 rs9391981 C allele showed a decreased risk to develop MM compared to G/G individuals (OR, 0.32; 95% CI, 0.12-0.81; p = 0.017) and a significant p-trend for protective effect (p = 0.016)</td>
<td>(95)</td>
</tr>
<tr>
<td>SERPINE1</td>
<td>rs2227667</td>
<td>Intronic</td>
<td>103</td>
<td>475</td>
<td>The rs2227667 G allele was significantly overrepresented in MM patients compared to controls, evidencing a protective effect on MM risk (OR, 0.39; 95% CI, 0.24-0.64; p = 0.0002) and a significant p-trend (p = 2.1x10(^{-5})), confirmed after permutation test (p = 0.0336)</td>
<td>(94)</td>
</tr>
</tbody>
</table>
Table I. Continued.

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Position/Function</th>
<th>Cases</th>
<th>Controls</th>
<th>Description of association</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAF3</td>
<td>rs12147254</td>
<td>Intronic</td>
<td>249</td>
<td>268</td>
<td>The TRAF3 rs12147254 A allele showed a significantly decreased risk of MM (OR, 0.71; 95% CI, 0.62-0.82; p<0.001), confirmed after permutation test (p<0.001)</td>
<td>(93)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polymorphisms in DNA repair, cell cycle and apoptosis genes</td>
<td></td>
</tr>
<tr>
<td>BAX</td>
<td>rs1042265</td>
<td>3'UTR</td>
<td>108a</td>
<td>482</td>
<td>Carriers of the A allele for the BAX rs1042265 variant showed a lower risk to develop MM respect G/G homozygotes (OR, 0.40; 95% CI, 0.21-0.78; p=0.007)</td>
<td>(95)</td>
</tr>
<tr>
<td>CASP3</td>
<td>rs1049216</td>
<td>3'UTR</td>
<td>128a</td>
<td>516</td>
<td>Subjects with the C/C genotype for the CASP3 Ex8+567 T>C SNP showed a border line association with a 5-fold decreased risk of MM (OR, 0.2; 95% CI, 0.0-1.0; p=0.05)</td>
<td>(101)</td>
</tr>
<tr>
<td>CASP9</td>
<td>rs1052576 (Q221R)</td>
<td>Missense</td>
<td>128a</td>
<td>516</td>
<td>A/A homozygotes for the CASP9 Ex5+32 G>A SNP evidenced a decreased risk of MM (OR, 0.5; 95% CI, 0.3-0.9; p=0.02)</td>
<td>(101)</td>
</tr>
<tr>
<td></td>
<td>rs7516435</td>
<td>Intronic</td>
<td>108a</td>
<td>482</td>
<td>G/G homozygotes for the CASP9 rs7516435 variant showed a 2.6-fold higher risk to develop MM (p=0.007) and an overall significant p-trend (OR, 2.59; 95% CI, 1.30-5.15; p=0.005)</td>
<td>(95)</td>
</tr>
<tr>
<td>LIG4</td>
<td>rs1805389 (A3V)</td>
<td>Missense</td>
<td>270</td>
<td>220</td>
<td>Heterozygotes for the A3V variant of LIG4 showed a decreased risk to develop MM (OR, 0.49; 95% CI, 0.27-0.89; p<0.05)</td>
<td>(99)</td>
</tr>
<tr>
<td></td>
<td>rs1805388 (T9I)</td>
<td>Missense</td>
<td>270</td>
<td>220</td>
<td>T/T homozygotes for the T9I polymorphism of LIG4 showed a decreased risk to develop MM (OR, 0.22; 95% CI, 0.07-0.70; p<0.05)</td>
<td>(99)</td>
</tr>
<tr>
<td>XRCC4</td>
<td>rs963248</td>
<td>Intrinsic</td>
<td>306</td>
<td>263</td>
<td>Carriers of the XRCC4 rs963248 G allele showed an increased risk to develop MM (OR, 1.54; 95% CI, 1.07-2.20; p=0.024) and a statistically significant p-trend (p=0.026)</td>
<td>(98)</td>
</tr>
<tr>
<td>XRCC5</td>
<td>rs1051685</td>
<td>3'UTR</td>
<td>306</td>
<td>263</td>
<td>Homozygotes for the XRCC5 rs1051685 G allele showed an increased risk to develop MM (OR, 8.3; 95% CI, 1.05-65.35; p=0.027) and a statistically significant p-trend (p=0.015)</td>
<td>(98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polymorphism in xenobiotic metabolism and transport genes</td>
<td></td>
</tr>
<tr>
<td>CYP1A1</td>
<td>rs4646903</td>
<td>3'Near gene</td>
<td>116</td>
<td>176</td>
<td>Carrier of the CYP1A1*2A allele showed a minor risk to develop MM respect wild-type homozygotes (OR, 0.57; 95% CI, 0.33-0.99; p=0.048)</td>
<td>(120)</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>rs1056836 (V432L)</td>
<td>Missense</td>
<td>279</td>
<td>742</td>
<td>Carriers of the CYP1B1 rs1056836 G allele showed an increased risk to develop MM (OR, 1.42; 95% CI, 1.00-2.02)</td>
<td>(107)</td>
</tr>
<tr>
<td>mEH</td>
<td>rs2234922 (H139R)</td>
<td>Missense</td>
<td>102</td>
<td>205</td>
<td>The homozygotes G/G for the mEH SNP rs2234922 showed a significantly increased risk to develop MM (OR, 5.81; 95% CI, 1.26-35.71; p=0.01)</td>
<td>(106)</td>
</tr>
<tr>
<td>GSTT1</td>
<td>(pos/null)</td>
<td>Missense</td>
<td>90</td>
<td>205</td>
<td>Patients with null genotype for the GSTT1 gene present a 2.5-fold increased risk to develop MM (OR, 2.47; 95% CI, 1.26-4.80; p=0.008)</td>
<td>(105)</td>
</tr>
<tr>
<td>MTHFR</td>
<td>C677T</td>
<td>Missense</td>
<td>798</td>
<td>3000</td>
<td>The results obtained from a meta-analysis evidenced an association between the MTHFR C677T gene polymorphism and risk of MM. T carriers had an increased risk to develop MM when analyzing all ethnic groups together (FE OR, 1.23; 95% CI, 1.04-1.47) and in Caucasian (FE OR, 1.54; 95% CI, 1.14-2.08), while not in East Asian (FE OR, 1.05; 95% CI, 0.82-1.34)</td>
<td>(118)</td>
</tr>
<tr>
<td>MTR</td>
<td>rs1805087 (2756A>G; D919G)</td>
<td>Missense</td>
<td>173</td>
<td>1700</td>
<td>Carriers of the G allele for the MTR A2756G variants showed a decreased risk to develop MM (OR, 0.61; 95% CI, 0.40-0.93; p=0.02)</td>
<td>(114)</td>
</tr>
</tbody>
</table>
to be relevant players in MM pathogenesis (87). Several reports investigated SNPs in \textit{IL6}, \textit{IL6R} and \textit{IL6ST} genes (75,76,80-82) and up to date, several studies failed to evidence association with the well studied \textit{IL6} promoter -174G/C SNP (rs1800795) (70,75,80-82). In one study the \textit{IL6} -572G/C (rs1800796) was associated with an increased risk to develop MM for carriers of the -572C allele (75). However, this association was not confirmed in a following study (82), whereas an increased risk of MM was found for carriers of the minor allele of SNPs D398A (rs8192284), rs7529229 and rs6684439 in the \textit{IL6R} gene. Nevertheless, association within \textit{IL6R} SNP rs8192284 was investigated in a third study that did not confirm the previous findings (81). Several SNPs in other cytokines and immunity-related genes, such as \textit{IL1B}, \textit{IL1A}, \textit{IL1RN} (77, 85), \textit{IL4R} and \textit{FCGR2A} (86) have been found to be associated with MM risk, although there is a lack of replication studies limiting the applicability of these findings.

Polymorphisms in growth factors and cell signaling genes. The complex network of signaling pathways activated by several proteins present in the bone marrow microenvironment play a relevant role in malignant plasma cells proliferation, migration and survival (88). The activation of the nuclear transcription factor \textit{NF}-\textit{kB} is thought to be one of the most important factors to enhance cell proliferation in MM pathogenesis (89,90). The minor alleles of SNPs in genes related to the \textit{NF}-\textit{kB} pathway, such as the inhibitor \textit{I\kappa B\alpha} (rs2233406, rs3138054, rs2233419) and the transcriptional activator \textit{TRAF3} (rs12147254) have been associated with a protective effect on MM development (91-93). Several polymorphisms in genes related to insulin metabolism resulted associated with MM risk. In particular, three SNPs in the \textit{IGF1} gene (rs7965399, rs2195239, rs2373722), one in the \textit{IGFBP3} (rs3110697) gene and two in the \textit{IRS1} gene have been associated both with increased or decreased risk of MM (82).

Several SNPs in other immunity-related and adhesion/growth genes, such as \textit{SERPINE1}, \textit{CCR7}, \textit{HGF}, \textit{JAK3} (94), \textit{CD4} (71), \textit{RIPK1} (95) and \textit{HPSE} (96) have been found to be associated with MM risk. Nevertheless, these results wait to be replicated in independent populations. Other reports did not evidence significant results (97).

Polymorphisms in DNA repair, cell cycle and apoptosis genes. SNPs in genes of the DNA repair system have been deeply investigated to uncover the genetic susceptibility of many cancer types, including MM (98-100). The observation of recurring translocation in MM patients involving the 14q32.3 cytogenetic band, which is considered the primary genetic event leading to the malignant transformation of the plasma cells, has supported the idea that alteration of the class switch recombination (CSR) process could play a fundamental role in MM pathogenesis. The \textit{XRCC5} gene encodes for the Ku80 protein, that together with Ku70 (\textit{XRCC6}) constitutes the Ku70/Ku80 complex that acts in the recognition of double strand breaks (DSBs). The DNA breakpoints recognized by Ku70/Ku80 are subsequently joined by the \textit{XRCC4}/DNA ligase IV complex. Interestingly, some authors reported associations of \textit{XRCC4} (rs963248), \textit{XRCC5} (rs1051685) and \textit{LIG4} A3V (rs1805389), T9I (rs1805388) SNPs with MM susceptibility (98,99). In particular, carriers of the \textit{XRCC4} rs963248 G allele as well as carriers of the \textit{XRCC5} rs...

<table>
<thead>
<tr>
<th>Position/Function</th>
<th>Gene</th>
<th>SNP</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(112)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(103)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(105)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(106)</td>
</tr>
</tbody>
</table>

Table I. Continued.

This study has been conducted only in women.
rs1051685 G allele showed an increased risk to develop MM (98), while heterozygotes for the LIG4 A3V SNP as well as rare homozygotes for the LIG4 T91 SNP have been shown to have a lower susceptibility to MM (99). SNPs in BAX, CASP3 and CASP9 genes were found to be associated with MM risk in women (95,101), while the p53 codon 72 polymorphism (102) and SNPs in XRCC3 and ERCC2 genes (98,100) showed no associations with MM risk.

Polymorphisms in xenobiotic metabolism and transport genes. SNPs in genes coding for enzymes acting in phase I, phase II metabolic reactions and phase 0/III transport have been also investigated for associations with genetic susceptibility to MM. Glutathione-S-transferases (GSTs) unite phase I activated metabolites to favour their excretion from the organism. Polymorphisms in the GSTM1, GSTT1 and GSTP1 loci have been investigated in several case-control studies with weak evidence of association (102-105). Although not confirmed in other studies, Lincz et al showed an association between the GSTT1 null genotype and an increased MM risk. The authors also showed an association of both the rare homozygotes for the Q192R (rs662) SNP in the PON-1 genes and NAT2 rapid/slow phenotype with an increased risk of MM (105). In a following study on polymorphisms in genes involved in benzene metabolism Lincz et al evidenced an increased susceptibility to MM for carriers of ‘high-risk genotypes/phenotypes’ of GSTT1 (null), NQO1 (187PS/SS, rs1800566) and mEH (high activity) genes as well as for the G/G homozygotes for the mEH H139R (rs2234922) polymorphism (106). Nevertheless, in another study investigating NQO1 P187S (rs1800566), PON-1 Q192R (rs622) and mEH H139R (rs2234922) SNPs no associations were found (107).

Folate-metabolizing enzymes have also been intensely investigated in relation to MM risk. MTHFR, which has been found associated with cancer risk (108,109), is one of the most important enzymes involved in the regulation of folate homeostasis. Two MTHFR missense SNPs, C677T (rs1801133) and A1298C (rs1801131), were investigated in relation to MM susceptibility in various reports with evidence for association (110-112) as well as for no association (113-117). Recently, a meta-analysis confirmed a possible role for the MTHFR C677T (rs1801133) SNP in MM susceptibility, with an increased risk for carriers of the 677T allele (118). The minor allele (G) of the missense substitution A2756G (rs1805057) in the enzyme methionine synthase (MS or MTR) has been found associated with higher risk of MM in a mixed Caucasian and African-American population (112), but with decreased risk in an Asian population (114). However, this effect was not observed in a third study (117). SNPs in other genes such as ABCB1, TYMS, CYP1A1 and CYP1B1 have been also investigated and showed modest evidence of association with MM risk (107,112,114,119,120).

4. Pharmacogenetics of multiple myeloma

The study of pharmacogenetics in MM is relatively recent, the earliest studies dating back to early 2000. Several studies have explored factors influencing the individual response to chemotherapies and the resulting survival, while other studies have tried to further our understanding on adverse reaction to drugs. **Role of SNPs in therapy outcome and survival.** Associations between several genetic variants and therapy outcome have been already reported. The TNF-α promoter SNP -238G/A (rs361525) has been associated with response to a thalidomide maintenance therapy in relapsed and refractory MM, showing a prolonged progression-free survival (PFS) and OS for carriers of the A allele (121). Interestingly, borderline association of TNF-α gene polymorphisms and PFS has been observed in previous studies (78,79) and a significant association of the TNF-α -238A allele with a better PFS and OS in patients treated with thalidomide and dexamethasone has been confirmed by recent findings (73).

Dasgupta et al showed association of the I105V (rs1695) SNP of the GSTP1 gene with a better PFS in MM patients homozygous for the 105V allele after standard and high-dose chemotherapy (HDM) (122). A similar association between I105V homozygotes for the GSTP1 SNP I105V (rs1695) and MM outcome after DAV (dexamethasone/adriamycin/vincristine) induction therapy has also been described by others (123,124).

Homozygotes for the T allele of TYMS +157C/T (rs699517) polymorphism have been shown to have a worse response to ASCT (124). An association with an improved outcome after HDM and ASCT in MM patients and a near-to-significance association with an improved OS for the T allele for the SNP rs1051296 in the folate transporters SLC19A1 gene has also been reported (125).

Due to their importance in the determination of drug bioavailability, drug metabolizing enzymes and drug transporters coding genes are among the most investigated for a role in MM pharmacogenetics. Among these, ABCB1 has been widely studied. In particular the well known ABCB1 C3435T (rs1045642) and G2677T/A (rs2032582) polymorphisms were found associated with outcome of different treatments in MM patients (123,126-128). The T allele of the ABCB1 C3435T has been associated with a better response to DAV treatment (123), a better response and a better PFS (T/T homozygotes) after bortezomib treatment of relapsed and/or refractory myeloma patients (128,129) and with better OS of MM patients (130). The rare T allele of the triallelic ABCB1 SNP G2677T/A has been associated to a better response to DAV (123) and a better OS (127) in MM patients.

SNPs in genes encoding drug metabolizing enzymes belonging to the cytochrome P450 family have been investigated as well (i.e., CYP2C19, CYP2D6, CYP3A4) with controversial results (123,126,131,132). In a study investigating two polymorphisms of CYP2C19 gene, poor metabolizer phenotype was associated with a poor response to thalidomide-based therapies (132). Vangsted et al showed the association of ERCC2 K751Q (rs1052559), XRCC3 T241M (rs861535), CD3EAP -21G/A (rs967591) (100) and IL1B -31T/C (rs1143627) (85) polymorphisms with outcome after ASCT in MM patients receiving HDM. In particular, carriers of the ERCC2 K751Q C allele, the variant T allele of XRCC3 T241M and the A allele of CD3EAP 21G/A SNP had a better time to treatment failure (TTF) in respect to homozygous wild-type carriers and the variant A allele of CD3EAP 21G/A resulted also associated with a better OS (100). Carriers of the variant C allele for the IL1B -31T/C SNP showed a significantly improved OS than T carriers (85). A role of the NFKB1 -94 ins/delATTG polymorphism has been
shown in patients receiving Interferon-α (IFN-α) as maintenance therapy after HDM (133). Interestingly, in a recent study, Vangsted et al investigated additional genetic variants in the IL1B promoter region and their impact on TTF, OS and IFN-α maintenance therapy. Carriers of the T allele of the IL1B C-3737T (rs4848306) as well as carriers of the TGT haplotype resulting from the IL1B SNPs C-3737T, G-1464C (rs1143623) and T-31C (rs1143627) showed a reduced OS and TTF. In addition, carriers of the combination IL1B C-3737T allele/ NFkB1 -94 delATTG alleles showed a better TTF and OS in patients treated with a IFN-α maintenance therapy (134). An association between the carriers of the G allele for the -8C/G SNP in the 20S proteasome subunit coding gene PSMA6 and a better 5-year OS has been also shown (135). Recently, Du et al evidenced the association of the carriers of the A allele of the TRAF3 SNP rs11160707 with an improved PFS, while the variant alleles for two NFkB2 SNPs (rs12769316 and rs1056890) were associated, respectively, with an increased and a decreased OS (93).

Role of SNPs in treatment-related side effects and toxicity. Treatment-related neuropathy is one of the most common side effects in MM and affects about 40-64% of the patients treated with bortezomib (136). Peripheral neuropathy has been registered also following thalidomide treatment in about 40% of the patients (137) and, at a minor grade, in patients treated with lenalidomide (138). Recently, Broyl et al analyzed a panel of over 3,400 SNPs in 964 genes in 1,495 patients from different clinical trials, showing overall associations of SNPs in SERPINE1 (rs7242), ADRB2 (rs2082382, rs1042714), ID3 (rs1555026), CYP2C9 (rs1934951), CAMKK1 (rs7214723), CYP2C8 (rs1058932), SLCIOA2 (rs3179102), and NFATC2 (rs228832) genes with thalidomide-related neuropathy (140). The same SNP panel has been used to investigate the role of genetic variation in the occurrence of thalidomide-related venous thrombotic events (VTEs). The results showed a total of 18 SNPs, validated in 2 patient groups from different clinical trials, associated with the occurrence of VTEs in thalidomide treated patients (141). The use of bisphosphonates in MM could be associated with the development of osteonecrosis of the jaw (ONJ) (142) and Sarasquete et al showed a statistically significant association of the CYP2C8 SNP rs1934951 with the occurrence of ONJ (143).

5. Limits and perspectives: the rationale for the IMMEnSE consortium

Despite several efforts towards the comprehension of the role of common genetic variability in modifying the individual risk to develop MM, to date no locus has been unequivocally established as risk factor for MM development. The fairly small sample sizes (ranging from 26 to 352 cases) of the published studies, due in part to the low incidence of the disease, could represent one fundamental limiting factor to detect genetic associations with MM risk. This is particularly important considering the fact that the genetic risk to develop MM is likely influenced by low-penetrance variants the
The IMMEnSE consortium. The International Multiple Myeloma rESEarch (IMMEnSE) consortium aims to improve the understanding of genetics and pharmacogenetics of MM. The driving idea of the IMMEnSE consortium is to join together the efforts of different research groups with the constitution of a large bio- and databank to allow more powerful and meaningful investigations able to uncover the role played by genetic variants in MM genetics, as successfully done for other diseases (147,148). To date, the IMMEnSE consortium brings together twelve basic and/or clinical research groups with a wide spectrum of expertise and spreads widely across six European countries (Table II). Recognizing the need for further expansion of this network, the recruiting of collaborators and partner institutions is continuously ongoing.

The cases included in the consortium population are defined by a confirmed diagnosis of MM, according to the International Myeloma Working Group (IMWG) criteria (1). For each patient, information about gender, age at diagnosis, β2-microglobulin, albumin, creatinin, haemoglobin, bone lesions and previous clinical history at diagnosis are collected. Detailed information concerning front line and relapsed/refractory patients therapies are collected, as well as the individual response to them. PFS from ASCT, OS and toxicity events are registered as well to investigate the role of genetic variants in the pharmacogenetics of MM. Moreover, with the aim to investigate genetic variables involved in the transition from MGUS to MM, positive history of MGUS is registered. So far, 743 MM cases diagnosed between 1992 and 2010 have been retrospectively recruited in each participating centre up to now and collected at the German Cancer Research Center, where the DNA bank and the central database have been set up. The collection of MM and MGUS cases is currently ongoing in every participating centre and the population is expected to reach 2000 cases within 3 years.

Different region-specific subpopulations of unmatched controls have been selected for a total of 950 healthy individuals enrolled to date. Controls have been selected among the general population as well as among hospitalized subjects with different diagnosis excluding cancer. Gender and age at recruitment are collected for every subject enrolled. For each subject, informed consent to collect fresh blood and perform DNA extraction for research purpose has been requested and collected individually by each centre. Genetic analyses are being performed in the German Cancer Research Center (Heidelberg, Germany). Detailed information on the demographic and clinical characteristics of the IMMEnSE consortium population are described in Table III.

6. Future directions

Epidemiological studies have been shown to be of great value to the understanding of the biology of many other cancer types. The available results on genetic risk of MM clearly evidence the necessity of additional studies assessing also the interplay of genetic and clinical factors to fully understand the molecular mechanisms underlying the susceptibility to MM. At the same time, the consortium aims to contribute to the understanding
of how the genotype may predict the clinical outcome and the degree of response to treatments, in order to offer new clues to optimize treatment and to improve patients’ lives. Thus, the IMMeSE consortium will also allow the optimization of the efforts towards the translational implementation of genetic findings.

Replication of best associated SNPs. In the proposed framework of the IMMeSE consortium, the first objective is to conduct a comprehensive replication of the most important and significant genetic associations found with MM risk. As shown in Fig. 1, the current size of the IMMeSE population is already enough to guarantee a statistical power over 80%
for the identification of an OR of 1.5 with a Minor Allele Frequency (MAF) of 0.05, up to an OR of 1.25 with a MAF of 0.25 or greater. Besides, taking into account the ongoing recruitment of MM cases, this power is destined to grow. Thus, these results should make a significant improvement to the interpretation of the controversial results published to date.

GWAS, validation of associated loci and rare SNP analysis. The contribution of GWAS in the identification of new loci associated with risk of several cancer types has been of extreme importance in the last few years. Up to date, no GWAS has been conducted on MM. As soon as GWAS data will be available also for MM risk, the IMMEnSE population will constitute a valuable tool for replication and confirmation of the most interesting results. Moreover, given that GWAS studies still lack the coverage of less common variants (i.e., MAF <5%), their investigation in candidate-gene approach studies will still be of primary importance in MM genetic risk assessment. In this context, the aim of the IMMEnSE consortium will be to investigate genetic variants in regions shown to be possible actors in the pathogenesis of MM.

Identification of tagged functional variants. Tagging SNPs are unlikely to be directly responsible for the effect seen on disease risk. The identification of functional genetic variants associated with tag SNPs is one of the most fascinating and important challenges in the near future. While tag SNPs can sufficiently cover linkage disequilibrium (LD) blocks within a region, direct sequencing or fine mapping of the associated loci are often needed to determine the effective genetic variants able to impact the MM risk. Availability of samples from MM cases will be paramount for these tasks, both to perform sequencing of targeted regions in order to discover potentially causal variants and/or to test whether such candidate variants show a stronger association than tag SNPs identified by GWAS.

Multifactorial risk scores. The impact of common low-penetrance variants taken individually is expected to be very small. Nevertheless, the interactions of many modest contributions could lead to a significant improvement of MM risk. The cumulative risk could be determined from interactions between genetic variants as well as from the interaction of genetic and environmental factors. The evaluation of gene-environment interactions according to a multiplicative or supra-multiplicative statistical model requires very large sample size to ensure an adequate power. However, the population collected in the context of the IMMEnSE consortium offers the possibility to build multifactorial risk scores based on additive models that take into account both genetic factors and clinical variables and evaluate their predictive power. This could lead to the identification of MM susceptibility models able to describe and better predict the risk of MM.

The identification of 'easy-to-use' prognostic markers. To establish clear and effective prognostic factors for staging, outcome and survival of MM patients remains one of the most important issues to be addressed. Genetic markers offer the great advantage to be easily determinable and invariant over time. Thus, they appear to be ideal candidates to be employed as fast markers in screening, prevention and diagnosis of diseases. Even if with the data currently available on MM we are still far from this goal, the translational potential of pharmacogenetics appears to be relevant. In the context of the IMMEnSE consortium, clinical parameters at diagnosis, response to treatments, PFS and OS will be evaluated in relation to genetic variants studied to individuate new genetic prognostic markers.

Acknowledgements

We acknowledge support by the recruiting hospitals and physicians of the study regions as well as their collaborating nurses and technicians. Collection of blood samples from Spain, patients from Granada area and DNA extraction was partially supported by grants P08-CV1-4116 from Consejería de Salud de la Junta de Andalucía (Sevilla, Spain) and PI081051 from Fondo de Investigaciones Sanitarias (Madrid, Spain). Collection of blood samples from Polish patients and controls from Lodz area and DNA extraction was supported by a grant from Polish Ministry of Science and Higher Education (No. NN402178334).

References

