Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells

GUANGWEN WU1, XUZHENG CHEN1, JUN PENG2, QIAOYAN CAI2, JINXIA YE2, HUIFENG XU3, CHUNSONG ZHENG1, XIHAI LI1, HONGZHI YE1 and XIANXIANG LIU1

1Academy of Integrative Medicine; 2Academy of Integrative Medicine Biomedical Research Center; 3Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P.R. China

Received November 3, 2011; Accepted December 19, 2011

DOI: 10.3892/ijo.2012.1330

Abstract. Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

Introduction

Human osteosarcoma (OS) is the most common primary malignant bone tumor, accounting for approximately 20% of all primary sarcomas in bone (1). It occurs predominantly in adolescents and young adults (2). Well-known for its metastasis and high local recurrence rate (3,4), osteosarcoma is a type of cancer whose treatment requires an extensive multimodal approach including surgery, radiotherapy and chemotherapy.

Currently, chemotherapeutic regimens for human osteosarcoma treatment use combination of multiple chemotherapeutic agents including high-dose methotrexate (HD-MTX) with leucovorin rescue, doxorubicin (adriamycin), cisplatin, and ifosfamide either with or without etoposide (5). Although new therapies consisting of aggressive adjuvant chemotherapy and wide tumor excision have led to a significant benefit in terms of patients' survival, the frequent acquisition of drug-resistant phenotypes and unwanted side effects are often associated with chemotherapy and remain as serious problems (6). Moreover, many currently used chemo-therapeutic agents for cancer therapy have potent cytotoxic effects in normal cells and may induce DNA mutations that probably lead to secondary cancers (7). Therefore, new therapeutic strategies which can improve the effect of current chemotherapy need to be developed.

A millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz. Organisms produce coherent oscillations at 0.5x10^-10-3x10^-2 Hz during metabolism similar to the frequency of a millimeter wave. Therefore, the energy of a millimeter wave can be absorbed by the organism through resonance. In turn, the energy can interfere with signal transduction and affect metabolism (8-10). It has been shown that a millimeter wave can evoke multiple biological effects (11,12) and is useful in the treatment of various types of diseases including cancers, such as hepatic cellular cancer patient (13,14). However, the effects of MW on the growth and apoptosis of human osteosarcoma U-2OS cells, have not yet been reported.

Apoptosis is a genetically mediated mechanism by which individual cells orchestrate their own deletion in normal and diseased tissues. It is a complex process which includes signal transduction (15) and the degradation of cellular protein and DNA (16). Disturbed regulation of this vital process represents a major causative factor in the pathogenesis of cancers including osteosarcoma (17,18). The Bcl-2 family proteins are important regulators of apoptosis including both anti-apoptotic members such as Bcl-2 and pro-apoptotic members such as Bax (17,18).
One possible mechanism by which Bcl-2 family proteins regulate apoptosis is through their influence on the permeability of mitochondrial outer membrane (MOM) following homo- or hetero-association (19). It has been demonstrated that after activation, the pro-apoptotic Bax or Bak is sufficient to induce mitochondrial outer membrane permeabilization (MOMP) (20-22), releasing apoptogenic proteins such as cytochrome c, Smac/DIABLO and apoptosis inducing factor (AIF) (22-25). The released cytochrome c leads to apoptotic protease-activating factor (Apaf-1)-mediated activation of initiator caspase-9, which in turn activates effector caspases (26). Anti-apoptotic Bcl-2 proteins have been reported to protect cells from many different apoptotic stimuli and are important for cell survival (27-29) and may bind to active Bax to prevent it from damaging the MOM (20,25,30,31). The balance of active anti- and pro-apoptotic Bcl-2 family members determines the fate of cells, and alteration of the ratio by aberrant expression of these proteins impairs the normal apoptotic program contributing to various apoptosis-related diseases (32,33). For instance, overexpression of Bcl-2 is commonly found in various cancers (34), which not only confers a survival advantage to the cancer cells but also causes resistance to conventional chemo- and radio-therapies. Therefore, promoting cell apoptosis through regulating the Bcl-2 family proteins has been the main focus in the development of anti-cancer therapies.

In order to extend the clinical observations of the potential anti-cancer effect of MW and help to establish a scientific foundation for further research, in this study, we evaluated the cellular effect of the MW on the growth and apoptosis of U-2OS human osteosarcoma cells, and investigated the possible molecular mechanisms mediating its biological effect. We found that MW inhibited the growth and induced apoptosis of U-2OS cells. MW-induced apoptosis was accompanied by loss of mitochondrial membrane potential (ΔΨm), release of cytochrome c, activation of caspase-9 and -3 and up-regulation of Bax to Bcl-2 ratio. Our finding suggests that promotion of cancer cell apoptosis through activation of the mitochondrion-dependent pathway is one of the mechanisms by which MW can be effective in the treatment of cancer.

Materials and methods

Materials and reagents. Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s medium (DMEM), and trypsin were purchased from HyClone Laboratories, Inc. (Logan, UT, USA). 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and Hoechst 33258 were obtained from Sigma Chemical Co. (St. Louis, MO, USA). An apoptosis assay (Annexin V-FITC Apoptosis Detection Kit II) was provided by Becton-Dickinson (San Jose, CA, USA). A JC-1 mitochondrial membrane potential detection assay was obtained from Biotium, Inc. (Hayward, CA, USA). The flow cytometric cytochrome c release assay (InnoCyte kit) was purchased from EMD Chemicals, Inc. (Darmstadt, Germany). Caspase-9 and -3 colorimetric protease assays were obtained from Invitrogen Inc. (Grand Island, NY, USA). The TaqMan Universal PCR Master Mix Kit, Bcl-2, Bax and GAPDH primer were purchased from AB Applied Biosystems (Foster, CA, USA). Chemiluminescent western blot immunodetection kit was obtained from Invitrogen Inc. (Grand Island, NY, USA). Bcl-2, Bax antibodies, horseradish peroxidase (HRP)-conjugated secondary antibodies and antibody against β-actin were obtained from Cell Signaling Technology, Inc. (Danvers, MA, USA).

MW stimulation. AKFA-100A millimeter wave therapeutic instrument (incidence power density: 4 mw/cm²; wavelength coverage: 7.5-10.0 mm) was manufactured by Beijing Zhongchengkangfu Technology Co. Ltd. (Beijing, China). As illustrated in Fig. 1, the detecting head of the instrument (radiation source) was positioned 30 mm above the cells (cultured in MW treatment group), which can ensure that all the cells are within the radiation area of 33.2±3 x 45.6±4 mm.

Cell culture. Human osteosarcoma U-2OS cells were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). The cells were grown in DMEM containing 10% (v/v) FBS and 100 U/ml penicillin and 100 µg/ml streptomycin in a 37°C humidified incubator with 5% CO2. The cells were subcultured at 80-90% confluency. Cells used in this study were subjected to no more than 20 cell passages.

Evaluation of cell viability by MTT assay. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. U-2OS cells were seeded into 96-well plates at a density of 1.0x10⁵ cells/ml in 0.1 ml of medium. The cells were treated with various doses of millimeter wave (MW) for 24 or 48 h. At the end of the treatment, 100 µl MTT [0.5 mg/ml in phosphate buffered saline (PBS)] were added to each well and the samples were incubated for an additional 4 h at 37°C. The purple-blue MTT formazan precipitate was dissolved in 100 µl DMSO. The absorbance was measured at 570 nm using an Elx808™ absorbance microplate reader (BioTek Instruments, Inc., VT, USA).

Observation of morphologic changes. U-2OS cells were seeded into 6-well plates at a density of 2.0x10⁵ cells/well in 2 ml medium. The cells were treated with various doses of MW for 24 or 48 h. Cell morphology was observed using a phase-contrast microscope (Olympus, Japan). The photographs were taken at magnification x100.

Cell treatment. U-2OS cells were digested with 0.25% trypsin and incubated in 25 ml culture flasks at a density of 1x10⁶ cells/ml in 4 ml of medium and in 6-well plates at a density of 1x10⁵ cells/ml in 2 ml of medium for 24 h. Cells were subsequently divided into 3 groups: control group (normal culture without treatment); MW 30 group (treatment with millimeter wave signal for 30 min each time, 3 times daily); and MW 60 group (treatment with millimeter wave signal for 60 min each time, 3 times daily).

Assessment of apoptosis morphology by Hoechst 33258 staining. After treatment with or without MW, both floating and trypsinized adherent cells were collected, washed once with ice-cold PBS, fixed with 1 ml of 4% paraformaldehyde for 20 min, and washed once with ice-cold PBS. Then, the cells were incubated in 1 ml PBS containing 10 µmol/l Hoechst 33258 at 37°C for 30 min, washed twice, and observed using fluorescence microscopy with standard excitation filters (Leica Dmirb) in random microscopic fields at magnification x200.
Detection of apoptosis by flow cytometry analysis with Annexin V/PI staining. Following treatment with various doses of MW, apoptosis of U-2OS cells was determined by flow cytometric (FCM) analysis using a fluorescence-activated cell sorting (FACS) caliber (FACSCalibur, Becton-Dickinson, CA, USA) and the Annexin V-FITC Apoptosis Detection Kit II. Staining was performed according to the manufacturer’s instructions and as we previously described (30). The percentage of cells in early apoptosis was calculated by Annexin V-positivity and propidium iodide (PI)-negativity, while the percentage of cells in late apoptosis was calculated by Annexin V-positivity and PI-positivity.

Measurement of mitochondrial membrane potential ($\Delta\Psi_m$) by flow cytometry analysis with JC-1 staining. To evaluate for the loss of mitochondrial membrane potential, a hallmark of apoptosis, cells were stained with the fluorescent dye JC-1, which is a cationic dye that exhibits potential mitochondria-dependent accumulation, indicated by a fluorescence emission shift from green to red. In this experiment, 1x10^6 treated U-2OS cells were resuspended after trypsinization in 0.5 ml of medium and incubated with 10 µg/ml of JC-1 at 37˚C, 5% CO$_2$, for 15 min. Both red and green fluorescence emissions were analyzed by flow cytometry.

Analysis of cytochrome c staining by flow cytometry. After treatment with various doses of MW for 48 h, cytochrome c release was determined by flow cytometry using the InnoCye™ flow cytometric cytochrome c release kit. Cytochrome c staining was performed according to the manufacturer’s instructions. The results were analyzed using the mean fluorescent intensity (MFI).

Analysis of caspase activation. The activity of caspase-9 and -3 were determined with a colorimetric assay using a colorimetric protease assay, following the manufacturer’s instructions and our previous description (35). Briefly, after treated with various doses of MW for 48 h, U-2OS cells were lysed with the manufacturer’s provided lysis buffer for 10 min on ice. The lysed cells were centrifuged at 10,000 x g for 1 min. An aliquot (150 µg) of the protein was incubated with 50 µl of the colorimetric tetrapeptides, Leu-Glu-His-Asp (LEHD)-pNA (specific substrate of caspase-9) or Asp-Glu-Val-Asp (DEVD)-pNA (specific substrate of caspase-3) at 37˚C in the dark for 2 h. Samples were read at 405 nm in an absorbance microplate reader (Elx808, BioTek Instruments, Inc., VT, USA). The data were normalized to the activity of the caspases in control cells and presented as fold of control.

RNA extraction and TaqMan real-time PCR analysis. U-2OS cells were seeded into 25 ml culture flasks at a density of 1x10^6 cells/ml in 4 ml of medium and treated with various doses of MW for 48 h. Total RNA from U-2OS cells was isolated with TRIzol reagent (Invitrogen). A total of 2 µg of total RNA was reverse transcribed, according to the manufacturer’s specifications (Promega). For the TaqMan assay, the TaqMan Universal
PCR Master Mix Kit (Applied Biosystems) was used. The human receptor activator of Bax, Bcl-2 and GAPDH primer and probe sets were labeled with the 5' reporter dye FAM and the 3' quencher TAMRA (Applied Biosystems). The thermocycling reaction contained the following: 8 µl of H2O, 10 µl of TaqMan Universal PCR Master Mix, 1 µl of primer and probe set, and 1 µl of cDNA. The reactions were run on the ABI PRISM 7500 Sequence Detection System (Applied Biosystems). The amplification program was as follows: 50˚C for 2 min, 95˚C for 10 min, followed by 40 cycles of 92˚C for 15 sec, and 60˚C for 1 min. The efficiency of the TaqMan assays was determined by assaying serial 10-fold dilutions, ranging from 10^2 to 10^6, of target cDNA. With standard analysis parameters of baseline set between cycle threshold 3 and 15 and the ∆Rn (threshold) set at 0.1, a standard curve of mean cycle threshold for three replicates at each dilution vs log10 amount of cDNA was determined (R^2 = 0.9985). The relative concentration of the mRNA was based on three triplicates normalized to their GAPDH value. The data are shown as fold compared with the control.

Western blot analysis. U-2OS cells were seeded into 25 ml culture flasks at a density of 1x10^5 cells/ml in 4 ml of medium and treated with various doses of MW for 48 h. The treated cells were lysed with mammalian cell lysis buffer containing protease and phosphatase inhibitor cocktails, and the lysates were separated by 12% SDS-PAGE gel under a reducing condition using 100 V for 1 h. The proteins were then electrophoretically transferred onto nitrocellulose membranes using the iBlot Western detection stack/iBlot dry blotting system (Invitrogen). Membranes were blocked for 30 min with agitation at RT in SuperBlock T20 (TBS) blocking buffer (Thermo Scientific, Rockford, IL). Membranes were washed in TBS with 0.25% Tween-20 (TBST) and exposed to primary antibodies against Bcl-2 or Bax (1:1000, Cell Signaling Technology) overnight at 4˚C with rocking. β-actin (1:1000, Cell Signaling Technology) was also measured as an internal control for protein loading. After membranes were washed in TBST, secondary horseradish peroxidase (HRP)-conjugated antibodies (anti-rabbit, Cell Signaling Technology) were added at 1:2500 dilution for 1 h at room temperature and the membranes were washed again in TBST. Finally, the antibody-bound protein bands were detected with ECL, and images were taken using a Bio-Rad ChemiDoc XRS+ (Bio-Rad Laboratories, Inc., CA, USA). The grayscale value ratio of the target protein to the internal control was used to measure the relative amount of Bcl-2 and Bax.

Statistical analysis. Data are the means of three determinations and data were analyzed using the SPSS package for Windows.
Results

MW inhibits the growth of U-2OS cells. The effect of MW on the viability of U-2OS cells was determined by MTT assay. As shown in Fig. 2, MW decreased the viability of U-2OS cells in a time- and dose-dependent manner. The cell viability was decreased to 54.4% at the highest dose of MW (treated with millimeter wave signal for 60 min each time, 6 times in 48 h) in this study. To further verify these results, we evaluated the effect of MW on U-2OS cell morphology via phase-contrast microscopy, since cell morphology in culture is indicative of the healthy status of the cells. As shown in Fig. 3, untreated U-2OS cells appeared as cobblestone, whereas after treated with various doses of MW for 24 or 48 h many of the cells became rounded, bright and shrunken, and detached from each other or floated in the medium. The phenomenon was much more obviously in MW 60 group treated with MW for 48 h. Taken together, these data demonstrate that MW inhibits the growth of U-2OS cells. Therefore, treatment with millimeter wave signal for 60 min each time, 3 times daily (MW 60) and 48 h were used as the inducing dose and time in the following experiments.

MW induces apoptosis in U-2OS cells. To determine whether the cell-growth suppressive effect of MW is due to apoptosis and to observe the morphologic characteristics of apoptosis, cells were stained with Hoechst 33258 after MW 60 treatment for 48 h, and detected by fluorescence microscopy. In the study, we found that control cells showed distribution of the stain and round homogeneous nuclei feature, while apoptotic cells increased gradually and displayed typical changes including reduction of cellular volume, staining bright and condensed or fragmented nucleus (Fig. 4A). For a further
assessment of apoptosis induced by MW, we examined the exposure of phosphatidylserine on the cell surface by Annexin-V/PI staining followed by FACS analysis. In this assay, Annexin V/PI double-negative population (labeled as LL in the FACS diagram) indicates viable cells; Annexin V-positive/PI-negative or Annexin V/PI double-positive population (labeled as LR or UR in the FACS diagram) represents cells undergoing early or late apoptosis, respectively. As shown in Fig. 4B and C, the percent of cells undergoing apoptosis following treatment with MW (including the early and late apoptotic cells) was 12.65±0.822, 28.24±5.27 and 39.43±5.99% in control group, MW 30 group and MW 60 group, respectively (P<0.01, vs. untreated control cells). The MW treated groups showed significantly more apoptosis than the untreated group (P<0.01). A dose-dependent effect was evident as the MW 60 group demonstrated much greater number of apoptotic cells (P<0.05, vs. MW 30 group).

**Effect of MW on the release of cytochrome c.** To determine the effect of MW treatment on the release of cytochrome c from the mitochondria, an FCM assay was used based on the selective permeabilization of the cell membrane while leaving the mitochondrial membrane intact. In this assay, viable cells exhibit staining of cytochrome c, whereas cells committed to the apoptotic process do not stain since they release cytochrome c from the mitochondria to the cytosol and, subsequently, out of the permeabilized cell. As shown in Fig. 6, the MFI was 42.01±1.14, 27.23±1.41 and 12.61±0.83 in the control group, MW 30 group and MW 60 group, respectively. Compared with the control group, both the MW 30 and MW 60 groups release significantly more cytochrome c (P<0.01). A dose-dependent effect was evident as the MW 60 group demonstrated much more cytochrome c released (P<0.05, vs. MW 30 group).

**Effect of MW on the activation of caspase-9 and -3.** To identify the downstream effectors in the apoptotic signaling
pathway, the activation of caspase-9 and -3 were examined by a colorimetric assay using specific chromophores, LEHD-pNA (specific substrate of caspase-9) and DEVD-pNA (specific substrate of caspase-3). As shown in Figs. 7 and 8, MW treatment significantly and dose-dependently induced activation of both caspase-9 and -3 in U-2OS (P<0.01, vs. untreated control cells; P<0.05, vs. MW 30 group).

MW regulated the expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax. Bcl-2 family proteins are key regulators of mitochondrion-mediated apoptosis, including anti-apoptotic members such as Bcl-2 and pro-apoptotic members such as Bax. Tissue homeostasis is maintained by controlling the ratio of active anti- and pro-apoptotic Bcl-2 family proteins. Higher Bcl-2-to-Bax ratio by aberrant expression of the proteins is found commonly in various cancers. To further study the mechanism of the MW anti-cancer activity, we performed TaqMan real-time PCR and Western blotting to examine the mRNA and protein expression of Bcl-2 and Bax in MW-treated U-2OS cells. The results of the TaqMan real-time PCR assay showed that MW treatment profoundly increased Bax and reduced Bcl-2 mRNA expression in U-2OS cells (Fig. 9; P<0.01, vs. untreated control cells; P<0.05, vs. MW 30 group); and the pattern of protein expression of Bax and Bcl-2 was similar to their respective mRNA levels (Fig. 10). The above suggest that MW induces

Figure 6. Effect of millimeter wave (MW) on the release of cytochrome c in U-2OS cells. Cells were treated with or without MW for 48 h. The mean fluorescent intensity (MFI) of cytochrome c positively stained cells was determined using FCM analysis. Data are the mean ± SD from at least three independent experiments. *P<0.05, **P<0.01, compared with the control group. △P<0.05, △△P<0.01, compared with the MW 30 group.

Figure 7. Effect of millimeter wave (MW) on the activity of caspase-9 in U-2OS cells. Cells were treated with or without MW for 48 h. Caspase-9 activity was determined by a colorimetric assay. The data were normalized to the caspase activities within untreated control cells and presented as fold of control. Data are the mean ± SD (error bars) from at least three independent experiments. *P<0.05, **P<0.01, compared with the control group. △P<0.05, △△P<0.01, compared with the MW 30 group.

Figure 8. Effect of millimeter wave (MW) on the activity of caspase-3 in U-2OS cells. Cells were treated with or without MW for 48 h. Caspase-3 activity was determined by a colorimetric assay. The data were normalized to the caspase activities within untreated control cells and presented as fold of control. Data are presented as the mean ± SD (error bars) of at least three independent experiments. *P<0.05, **P<0.01, compared with the control group. △P<0.05, △△P<0.01, compared with the MW 30 group.

Figure 9. Effect of MW treatment on the mRNA expression of Bax and Bcl-2 in U-2OS cells. Cells were treated with or without MW for 48 h. Bax mRNA and Bcl-2 mRNA quantified by real-time RT-PCR and normalized by their GAPDH in all the experimental groups. Data shown are averages with SD (error bars) from at least three independent experiments. *P<0.05, **P<0.01, significant versus control group. △P<0.05, △△P<0.01, compared with the MW 30 group.

Figure 10. Effect of MW treatment on the protein expression of Bax and Bcl-2 in U-2OS cells. Cells were treated with or without MW for 48 h and the protein expression level of Bax and Bcl-2 was analyzed by Western blotting. β-actin was used as the internal controls. Data are representative of three independent experiments.
mitochondrion-dependent apoptosis in U-2OS cells through the regulation of expression of Bcl-2 family proteins.

Discussion

Cancer cells are characterized by an unregulated increase in cell proliferation and/or a reduction in cell apoptosis (17). In addition, disrupted apoptosis contributes to drug resistance of tumor cells, which has become a significant obstacle for the successful management of patients with malignant tumors including osteosarcoma (6). Moreover, many currently used anti-cancer agents contain intrinsic and potent cytotoxicity to normal cells, which limits their long-term use and their therapeutic effectiveness (7). These problems highlight the urgent need for the development of novel cancer chemotherapies. Since physiotherapy, such as millimeter wave (MW), has relatively fewer side-effects as compared to modern chemotherapeutics and have long been used clinically to treat various types of diseases including cancer (13,36-38), finding that naturally occurring agents with pro-apoptotic activities is a promising approach for anti-cancer treatment.

Millimeter wave treatment is a physiotherapy, which has been demonstrated to be clinically effective in treating various types of diseases including cancers (13,14). However, the mode of action for its anti-tumor is still largely unknown. Therefore, before MW can be further developed as an anti-cancer agent, its anti-tumor activity and underlying molecular mechanism need to be elucidated.

Here we report for the first time that the millimeter wave (MW) reduces the viability and inhibits growth of human osteosarcoma U-2OS cells in a dose- and time-dependent fashion. Furthermore, we demonstrated that these effects on U-2OS cells result from the induction of apoptosis by millimeter wave.

Apoptosis is activated through two major pathways. For the intrinsic pathway, death signals are integrated at the level of the mitochondria (therefore, this pathway is also referred to as mitochondrion-dependent). For the extrinsic pathway, death signals are mediated through cell surface receptors. Both pathways eventually lead to the activation of caspases and nucleases, resulting in the destruction of the cell (13,14,17). Our experimental results showed that apoptotic cells induced by MW displayed condensed and fragmented nuclei by Hoechst 33258 staining (Fig. 4A). For the loss of plasma membrane asymmetry is one of the morphologic characteristics of the apoptotic program. In apoptotic cells, the membrane phospholipid phosphatidyserine (PS) is translocated from the inner to the outer leaflet of the plasma membrane, thereby exposing PS to the external cell environment. Annexin V is a 35-36-kDa Ca2+-dependent phospholipid-binding protein that has a high affinity for PS. Annexin V binds to cells with exposed PS. Therefore, flow cytometry with Annexin-V staining was used to further confirmed the results of Hoechst 33258 staining by showing that the important membrane alterations relating to apoptosis in U-2OS cells and the percent apoptosis increased in dose-corresponding manner (Fig. 4B and C). Taken together, these results suggested that millimeter wave indeed induced apoptosis in U-2OS cells. The loss of mitochondrial membrane potential (ΔΨm) is a hallmark of apoptosis. It is an early event preceding phosphatidyserine externalization and coincides with caspase activation (39,40). In healthy cells, the JC-1 dye stains the mitochondria fluorescent red (41). The negative charge established by the intact mitochondrial membrane potential allows this lipophilic dye, bearing a delocalized positive charge, to enter the mitochondrial matrix where it accumulates. When the critical concentration is exceeded, J-aggregates form. These aggregates are fluorescent red (590 nm). In apoptotic cells, the mitochondrial membrane potential collapses, and JC-1 cannot accumulate within the mitochondria. In these cells, JC-1 remains in the cytoplasm in a green fluorescent monomeric form. JC-1-stained apoptotic cells, having primarily green fluorescence (530 nm), are easily differentiated from healthy cells that have red and green fluorescence (42). Using FCM, healthy cells with red JC-1 aggregates are detected in the FL-2 channel and apoptotic cells with green JC-1 monomers are detected in the FL-1 channel. Thus, JC-1-stained cells that fluoresce in the FL-2 and FL-1 channels (UR quadrant) carry mitochondria with a polarized ΔΨm, whereas JC-1-stained cells that fluoresce in the FL-1 channel and not in the FL-2 channel (LR quadrant) carry mitochondria with a depolarized ΔΨm. Therefore, JC-1 dye-based assay was used to evaluate mitochondrial membrane potential in the study. Our data clearly showed that treatment with MW leads to a collapse of mitochondrial membrane potential (Fig. 5).

The mitochondrion-dependent pathway is the most common apoptotic pathway in vertebrate animal cells. Mitochondrial outer membrane permeabilization (MOMP) accompanied by the collapse of electrochemical gradient across the mitochondrial membrane is a key commitment step in the induction of mitochondrion-dependent apoptosis. This is the point of convergence for a large variety of intracellular apoptotic signaling pathways that eventually lead to the release of pro-apoptotic proteins from the mitochondrial intermembrane space, including cytochrome c, Smac/DIABLO, and Omi/HtrA2. Released cytochrome c activates APAF-1, which oligomerizes to form an apoptosis. This structure, in turn, recruits and activates caspase-9. Activated caspase-9 cleaves and activates executioner caspases, such as caspase-3, and eventually results in apoptosis (39,40,43). Therefore, to evaluate the effect of MW on the mitochondrion-dependent apoptosis pathway, we evaluated the release of cytochrome c and the activation of caspase-9 and -3. In this study, we found that MW induces the release of cytochrome c and the activation of both caspase-9 and -3 in U-2OS cells in a dose-dependent manner (Figs. 6-8). Thus, MW-induced U-2OS cell death is accompanied by an increase in the release of cytochrome c and the activities of caspases-9 and -3, which then stimulates the molecular cascade for apoptosis.

Occurrence of mitochondrial-dependent apoptosis is typically governed by contradicting the Bcl-2 family (44). Bcl-2 is a well-known anti-apoptotic protein that can prevent cytochrome c release whereas Bax (Bcl-2-associated X protein) and Bad, pro-apoptotic proteins, enhance cytochrome c release from mitochondria into cytosol (45), which is responsible for activating caspase-9,-3 and facilitates apoptosis (46). Therefore, the ratio of Bax to Bcl-2 is a critical for determining the fate of cells. In this study, we demonstrated that MW treatment dose-dependently enhances Bax mRNA expression and reduces Bcl-2 mRNA expression in U-2OS cells (Fig. 9; P<0.01, vs. untreated control cells; P<0.05, vs. MW 30 group). This indicates that MW induces apoptosis by affecting the ratio of Bax/Bcl-2 at transcriptional level. We further studied the role of MW on the
expression of proteins involved in the mitochondrial pathway. The results showed that MW treatment up-regulates Bax protein expression and down-regulates Bcl-2 protein expression (Fig. 10), which is in accordance with the pattern of their mRNA expression after MW treatment.

In conclusion, our data for the first time demonstrate that MW inhibits the growth of U-2OS cells and induces U-2OS cell apoptosis via the mitochondrion-dependent pathway. These results suggest that millimeter wave may be a potential novel treatment option for osteosarcoma and other cancers.

Acknowledgements

This work was supported by the Developmental Fund of Chen Keji Integrative Medicine (CKJ2010023).

References


