Primary thyroid lymphoma: The 40 year experience of a UK lymphoma treatment centre

M. ALZOUEBI, J.R. GOEPEL, J.M. HORSMAN and B.W. HANCOCK

1Academic Unit Clinical Oncology, Weston Park Hospital, Sheffield S10 2SJ; 2Department of Histopathology, Royal Hallamshire Hospital, Sheffield S10 2JF, UK

Received October 7, 2011; Accepted December 5, 2011

DOI: 10.3892/ijo.2012.1387

Abstract. We report the 40-year unselected experience of a UK lymphoma treatment centre. Between 1970 and 2010, 3363 cases of non-Hodgkin lymphoma were managed by the Sheffield Lymphoma Team. Seventy cases of primary thyroid lymphoma were identified during this time. This retrospective review of the clinical and pathological features of patients with thyroid lymphoma comprises one of the largest series conducted in the UK. The series included 57 females and 13 males with a median age at diagnosis of 69.5. The pathological subtypes were diffuse large B-cell lymphoma (DLBCL) in 50 patients, MALT lymphoma in 13, indolent B-cell lymphoma not otherwise specified (NOS) in 6 and T cell lymphoma in one patient. Of the 64 patients fully staged, 53 had Stage IE and 11 Stage IIE disease. Management modalities included surgery, chemotherapy, radiotherapy or combination treatment. Five-year survival rates for DLBCL, MALT lymphoma and indolent B-cell lymphoma NOS were 45%, 62% and 75%, respectively, with a median overall survival of all histological subtypes of 68 months (range 0-148) or 5.7 years. The outcomes of this series confirm previous experience. If treatment is needed after surgery radiotherapy alone is sufficient for Stage I and II low grade thyroid lymphoma. Combination chemotherapy or adequate chemotherapy followed by radiotherapy is warranted in high grade thyroid lymphoma.

Introduction

Primary thyroid lymphoma is a rare disease, representing only 2-8% of all thyroid malignancies and 1-2% of all newly diagnosed extranodal lymphomas (1-5). The majority of thyroid lymphomas are B-cell lymphoma, although there have been rare cases of Hodgkin and T cell lymphoma.

The most common lymphoma of the thyroid is diffuse large B-cell lymphoma (DLBCL) accounting for 50-70% of all cases (6). Mucosa-associated lymphoid tissue (MALT) lymphoma is a distinct lymphoma originating from parafollicular B cells, developing as a result of chronic inflammation and lymphoplasmacytic infiltration as seen in Hashimoto’s thyroiditis, hence the close correlation between the two diseases. MALT lymphomas are thought to account for 25-30% of all thyroid lymphomas (6). Histological evidence of mixed MALT lymphoma and DLBCL support the theory of transformation of DLBCL from a MALT lymphoma. This mixed subtype appears to have the same clinical behaviour as DLBCL (6). Primary thyroid lymphoma is often diagnosed and managed as two distinct clinical entities. High grade lymphomas with a more aggressive clinical course include DLBCL and T cell lymphoma, whereas MALT and follicular lymphomas are considered low grade with a more indolent natural history. Differentiation between the two clinical entities is important as it determines appropriate treatment options.

As with Hashimoto’s disease, thyroid lymphomas occur more commonly in females than in males with a ratio of 2:1, though in some series this has been reported to be as high as 14:1 (7).

Patients usually present with an enlarging neck mass, more rapidly growing in DLBCL than MALT lymphoma, often causing local obstructive symptoms and sometimes associated with cervical lymphadenopathy. Patients are often euthyroid although hypothyroidism can be seen in up to 10% of cases (6,8).

Diagnosis is usually achieved by ultrasound guided needle biopsy of the thyroid lesion although open biopsy provides further architectural detail confirming the diagnosis. Accurate staging is important in determining therapeutic options and predicting prognosis. Staging of disease beyond the neck with imaging of the chest, abdomen and pelvis and bone marrow examination is essential to establish optimal therapy for the disease. Primary thyroid lymphoma is staged according to the Ann Arbor staging classification, with up to 90% of patients presenting with early stage disease. Stage IE (extranodal) is defined as lymphoma confined to the thyroid gland. Stage IIE denotes spread beyond the thyroid to regional lymph nodes (6,9).

The overall 5 year survival for stage IE and IIE primary thyroid lymphoma is 80% and 50% respectively, compared with less than 35% for Stage IVE (6,7).

Traditionally the mainstay of treatment of thyroid lymphoma was surgery followed by radiotherapy if resection was incomplete. Unfortunately this led to significant relapse rates. So multimodality treatment with combination chemotherapy and
radiotherapy is now becoming standard practice, in particular for DLBCL. Treatment of MALT lymphoma is varied, with stage IE and IIE disease responding well to local therapy such as surgery or radiotherapy alone (10,11).

The aim of this retrospective analysis is to describe the clinical and pathological features and survival of a series of consecutive patients with primary thyroid lymphoma managed by the Sheffield Lymphoma Team over a forty-year period from 1970 to 2010. To our knowledge this study is one of very few non-selective series, examining a significant number of thyroid lymphoma cases accrued over four decades.

Materials and methods

The lymphoma database at Weston Park Hospital, Sheffield, was used to identify all patients diagnosed with thyroid lymphoma treated by the Sheffield Lymphoma Team between 1970 and 2010. In total 3363 cases of non-Hodgkin lymphoma (NHL) were recorded over the period of the study. The database identified a potential of 83 patients with NHL of the thyroid. Of these, notes were retrieved on 78 patients. Three patients were excluded as they had Stage IV disease and it was uncertain if the thyroid disease was truly primary. Two further patients were excluded as they were found, respectively, to have plasmacytoma and anaplastic carcinoma of the thyroid gland, and three others because pathology was not confirmative. Thus, in total, 70 patients were included in this retrospective analysis (Table I).

Case notes, pathology records and the chemotherapy electronic prescribing database were accessed to obtain the following information: patient demographic details, presenting features, stage of disease, histological subtype, treatment and survival.

Pathology reports were reviewed individually by a consultant haematopathologist (JRG).

Overall survival was calculated from time of diagnosis until death or date the patient was last seen using Kaplan-Meier survival graphs.

Results

Clinical features. Of the 70 patients, 57 were female and 13 male (female: male ratio of 4.4:1). The mean age at presentation was 66 years with a range of 20 to 90. All of the patients in the study were white British.

The most common presenting feature was a swelling or mass in the neck (97%), followed by dysphagia (16%). Biochemical derangements (hypercalcaemia and thyrotoxicosis) were seen in one patient. A total of 13 patients presented with stridor, 9 (70%) of whom required an urgent tracheostomy. Only 4 had ‘B’ symptoms (weight loss, night sweats, pyrexia) at presentation.

The majority of patients (91%) were fully staged. Poor performance status was the main reason for incomplete staging investigations.

Stage. Of the 64 patients fully staged, 51 had Stage IEA and 9 Stage IIEA. Two patients each had Stage IEB and Stage IIEB disease.

Histology. Histopathological diagnosis was made by biopsy of the thyroid gland in 44 patients and by fine needle aspiration (FNA) in two. The remaining patients underwent, in decreasing frequency total thyroidectomy, lobectomy, subtotal thyroidectomy or debulking surgery (Fig. 1).

Non-Hodgkin Lymphoma was sub-typed in accordance with the WHO 2008 classification (12). Indolent lymphomas (27% of total) were mostly MALT lymphoma, with the remaining follicular or unclassifiable tumours grouped as indolent B-cell lymphoma not otherwise specified (NOS). Aggressive lymphomas were nearly all diffuse large B-cell lymphoma (71% of total) with only one case of peripheral T-cell lymphoma.

Treatment. Treatment of thyroid lymphoma varied in our cohort of patients and depended on histology, patient co-morbidities and performance status. Management included - no additional treatment (following surgery), radiotherapy alone, chemotherapy alone and combination treatment with chemotherapy and radiotherapy (Fig. 2).

No further treatment. Four patients did not have any additional treatment following diagnosis. Two patients, both with MALT lymphoma, achieved a complete response with total thyroidectomy. One patient aged ninety with DLBCL was too unwell for...
further treatment and a further patient declined chemotherapy or radiotherapy.

Treatment following surgery

Radiotherapy only. Twenty-nine (41.4%) patients were treated with radiotherapy (RT) as a sole modality (Fig. 3). This was delivered using an anterior and posterior parallel opposed pair of 6 to 8 megavoltage photons to the bilateral cervical region and the upper mediastinum to include retrosternal disease extension. Doses ranged considerably from 12.5 Gy to 45 Gy in different fractionation regimens. The most commonly used prescription was 35 Gy in 20 fractions and 40 Gy in 20 fractions (Table II).

Seventy percent of patients with MA LT lymphoma compared to only 30% with DLBCL were treated with radiotherapy as a single modality. A total of 17 patients (58.6%) achieved a complete response and 4 a partial response with RT alone.

Of the 15 DLBCL patients undergoing RT, 7 (47%) achieved CR, 2 PR and 1 patient progressed despite radiotherapy. Response was not evaluable in 5 patients as one patient failed to complete the scheduled plan due to infection, one patient died shortly after receiving radiotherapy and in three patients response was not recorded. Of the 9 patients with MALT lymphoma, 7 (78%) achieved CR, 1 patient PR and 1 PD. Two of the five patients with thyroid lymphoma NOS achieved CR with radiotherapy alone.

Chemotherapy only. Eighteen patients in total were treated with chemotherapy alone (Fig. 4). Regimens most commonly

Table II. Radiotherapy doses used in patients treated with radiotherapy alone.

<table>
<thead>
<tr>
<th>Lymphoma</th>
<th>Radiation dose (n= no. of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤20 Gy</td>
</tr>
<tr>
<td>DLBCL</td>
<td>2</td>
</tr>
<tr>
<td>MALT lymphoma</td>
<td>0</td>
</tr>
<tr>
<td>NOS</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2. Patients undergoing treatment following surgery. RT, radiotherapy; CT, chemotherapy. *One patient was too unwell for further treatment.*

Figure 3. Outcomes of patients undergoing treatment with radiotherapy alone.

Figure 4. Outcomes of patients undergoing treatment with chemotherapy alone.

Figure 5. Outcomes of patients undergoing treatment with combination of chemotherapy and radiotherapy.
used were CHOP (cyclophosphamide, doxorubicin, vincristine and prednisolone), VEDex (vincristine, epirubicin and dexamethasone), PMitCEBO (prednisolone, mitoxantrone, cyclophosphamide, etoposide, bleomycin and vincristine) and oral chlorambucil. The median number of cycles given was six and the mean 5.4.

The single case of thyroid T cell lymphoma was treated with 6 cycles of CHOP resulting in a complete response. Interestingly, none of the MALT lymphomas were treated with chemotherapy alone. Twelve out of the 16 patients (75%) with DLBCL treated with chemotherapy alone achieved a CR. The single case of thyroid lymphoma NOS treated with chemotherapy alone achieved a partial response to chemotherapy.

Chemotherapy and radiotherapy. Nineteen patients (27%) were treated with a combination of chemotherapy initially, followed by radiotherapy to the neck. The majority (17) were of the DLBCL subtype and only 2 had MALT lymphoma. The median number of chemotherapy cycles received was 3, although four patients received four cycles each and one patient received 8 prior to radiotherapy. CHOP chemotherapy was the most widely used regimen. Combination chemotherapy and radiotherapy provided a complete response in 12 patients (70.5%) and a partial response in one patient with DLBCL. The majority of patients (76%) with DLBCL received a radiation dose of 40 Gy in 20 fractions, whilst three patients were treated with 30 Gy in 10-15 fractions. The two MALT lymphoma patients treated with combination chemotherapy and radiotherapy both received 40 Gy in 20 fractions (Fig. 5).

Recurrences. Of the 50 patients who responded to initial therapy, five subsequently relapsed; three of these were DLBCL and two MALT lymphoma. Only 3 patients relapsed after achieving a complete response to their initial treatment. Table III details the recurrences, initial and salvage therapies and responses observed. It demonstrates the poor outcomes for relapsed disease with only one patient achieving a partial response to second line treatment. Regimens used in the second line setting comprised COP (cyclophosphamide, vincristine and prednisolone), PMitCEBO, VEDex, ESHAP (etoposide, methylprednisolone, cytarabine and cisplatin), VAPEC B (vincristine, doxorubicin, prednisolone, etoposide, cyclophosphamide and bleomycin) and CHOD/BVAM (cyclophosphamide, doxorubicin, vincristine, dexamethasone, Carmustine, cytarabine and methotrexate).

<table>
<thead>
<tr>
<th>Age</th>
<th>Stage</th>
<th>Histology</th>
<th>Primary treatment</th>
<th>Response to primary treatment</th>
<th>Site of relapse</th>
<th>Time to relapse (months)</th>
<th>Second line treatment</th>
<th>Response to second line treatment</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>IIEA</td>
<td>DLBCL</td>
<td>RT alone</td>
<td>CR</td>
<td>Widespread disease</td>
<td>24</td>
<td>Chemo</td>
<td>PD</td>
<td>Died</td>
</tr>
<tr>
<td>69</td>
<td>IIEA</td>
<td>DLBCL</td>
<td>3x CHOP and RT</td>
<td>CR</td>
<td>Axilla</td>
<td>28</td>
<td>Chemo</td>
<td>PD</td>
<td>Died</td>
</tr>
<tr>
<td>57</td>
<td>IIEA</td>
<td>DLBCL</td>
<td>4x CHOP and RT</td>
<td>PR</td>
<td>Thyroid</td>
<td>2</td>
<td>Chemo</td>
<td>PD</td>
<td>Died</td>
</tr>
<tr>
<td>59</td>
<td>IEA</td>
<td>MALT</td>
<td>RT alone</td>
<td>CR</td>
<td>Brain</td>
<td>36</td>
<td>Chemo</td>
<td>PD</td>
<td>Died</td>
</tr>
<tr>
<td>78</td>
<td>IEA</td>
<td>MALT</td>
<td>3x CHOP and RT</td>
<td>PR</td>
<td>Thyroid</td>
<td>36</td>
<td>Chemo</td>
<td>PR</td>
<td>Alive</td>
</tr>
</tbody>
</table>

PD, progressive disease; PR, partial response; CR, complete response; CHOP (cyclophosphamide, doxorubicin, vincristine and prednisolone) chemotherapy.
Survival. At the time of writing, 42 patients had died; 26 were alive and in clinical remission and 2 were lost to follow-up. From diagnosis, the median overall survival for all subtypes of NHL was 68 months (range 0-148) or 5.7 years (Fig. 6). Fig. 7 demonstrates overall survival for the different NHL subtypes. Among the 50 patients with DLBCL, 30 (60%) achieved a complete response, 6% a partial response and 14% had progressive disease despite treatment. In 14%, response was not evaluable due to missing data, loss to follow-up or death due to unrelated causes. The median overall survival was 39 months (3.26 years) with a range of 27-57 months.

Of the 13 MALT lymphomas, 11 (84.6%) achieved a complete response. One patient responded partially and one patient progressed. Three of the six indolent B-cell lymphoma NOS responded completely to treatment whilst in two patients response was only partial.

The single case of T cell lymphoma achieved a complete response with chemotherapy alone. Five-year survival rates for DLBCL, MALT lymphoma and indolent B-cell lymphoma NOS were 45%, 62% and 75%, respectively.

Discussion

Published data on the treatment of thyroid NHL is limited to small numbered retrospective analyses. The authors are unaware of any prospective trials exclusively for thyroid NHL. Table IV demonstrates the studies which have included more than 50 patients. To date, only one UK study analysed more patients than the current study (13).

Overall, the incidence of NHL of the thyroid in this study was 2.1% (i.e. 70 out of 3363) with an average of 1.75 cases diagnosed annually. The patient group is broadly similar in terms of age, gender distribution, stage and pathology. Among our patients 16% had a past history of Hashimoto's disease and 27% had hypothyroidism; a third of these were in patients with MALT lymphoma.

Accurate histological diagnosis was made in the majority of patients with core needle biopsies or resection samples. Two patients were diagnosed by fine needle aspiration and confirmed as DLBCL. As per previous studies, the majority of primary thyroid lymphomas were of DLBCL and MALT subtypes. We suspect that most of the six cases of indolent B-cell lymphoma NOS would most likely have proved to be MALT lymphomas, as the majority were diagnosed before 1980 when current phenotyping techniques were not available.

Analysis of the data from this series of patients treated over a prolonged period of time in a single centre provides valuable insights into the management of this uncommon condition. It also highlights the significant variation in treatment pathways with some patients managed by surgery, chemotherapy or radiotherapy as a single modality or combination treatment. This experience reflects what was considered to be optimum practice at the time.

This study confirms previous experiences, the preferred method of treatment of localised thyroid lymphoma of indolent subtype is local treatment with either surgery alone and/or local radiotherapy. The dose of radiation administered varies across treating centres and in published series but often a low dose such as 24 Gy in 12 fractions is sufficient. High grade disease is usually best managed with combination chemotherapy or adequate chemotherapy followed by radiotherapy (at relatively higher doses of 30 Gy in 15 fractions as used in current practice) and this is supported by published reports (13,22,23). Nowadays, rituximab would be added to whatever chemotherapy regimen is used (24).

In conclusion, this unselected series of 70 patients treated for thyroid lymphoma demonstrated a response rate of 73% (CR 64%, PR 9%) to treatment and an overall median survival of 68 months. Recurrence was invariably fatal.

References

<table>
<thead>
<tr>
<th>Authors/(Refs.)</th>
<th>Year</th>
<th>No. of patients</th>
<th>Sex ratio (F:M)</th>
<th>5-year overall survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitran et al (14)</td>
<td>1977</td>
<td>65</td>
<td>0.81:1</td>
<td>71</td>
</tr>
<tr>
<td>Compagno and Oertal (15)</td>
<td>1980</td>
<td>245</td>
<td>2.55:1</td>
<td>53</td>
</tr>
<tr>
<td>Anscombe and Wright (16)</td>
<td>1985</td>
<td>76</td>
<td>8.4:1</td>
<td>37</td>
</tr>
<tr>
<td>Aozasa et al (17)</td>
<td>1986</td>
<td>79</td>
<td>1.8:1</td>
<td>46</td>
</tr>
<tr>
<td>Rosen et al (18)</td>
<td>1988</td>
<td>61</td>
<td>4.1:1</td>
<td>59</td>
</tr>
<tr>
<td>Logue et al (3)</td>
<td>1991</td>
<td>70</td>
<td>8:1</td>
<td>42</td>
</tr>
<tr>
<td>Matsuzuka et al (19)</td>
<td>1993</td>
<td>119</td>
<td>2:1</td>
<td>100</td>
</tr>
<tr>
<td>Tsang and Gospodarowicz (11)</td>
<td>1993</td>
<td>52</td>
<td>Not stated</td>
<td>64</td>
</tr>
<tr>
<td>Derringer et al (20)</td>
<td>2000</td>
<td>108</td>
<td>2.7:1</td>
<td>79</td>
</tr>
<tr>
<td>Belal et al (21)</td>
<td>2001</td>
<td>52</td>
<td>1.4:1</td>
<td>88</td>
</tr>
<tr>
<td>Harrington et al (13)</td>
<td>2005</td>
<td>91</td>
<td>5.5:1</td>
<td>48</td>
</tr>
<tr>
<td>Watanabe et al (22)</td>
<td>2011</td>
<td>171</td>
<td>3.9:1</td>
<td>85</td>
</tr>
<tr>
<td>Alzouebi et al (current study)</td>
<td>2011</td>
<td>70</td>
<td>4.4:1</td>
<td>60.7</td>
</tr>
</tbody>
</table>