Influence of resistance to 5-fluorouracil and tomudex on [18F]-FDG incorporation, glucose transport and hexokinase activity

ALISON A. LAW, ELAINA S.R. COLLIE-DUGUID and TIM A.D. SMITH

Division of Applied Medicine, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK

Received February 9, 2012; Accepted March 19, 2012

DOI: 10.3892/ijo.2012.1439

Abstract. Drug resistance is a major obstacle to cancer cure and may influence [18F]-fluorodeoxyglucose (FDG) incorporation. In this study, glucose transport, hexokinase activity and [18F]-FDG incorporation were measured in drug-resistant tumour cells generated by exposing H630 colon and MCF7 breast cancer cells to increasing concentrations of tomudex (raltitrexed) or 5-fluorouracil (5FU). Drug sensitivity was determined using the XTT assay: Tomudex-resistant (H630TDX and MCF7TDX) cells were more than 40,000-fold less sensitive to tomudex than were the parental wild-type, H630WT and MCF7WT, respectively. 5FU-resistant (H6305FU) cells were 100-fold less sensitive than parental H630WT cells to 5FU. As previously reported for 5FU-resistant MCF7 breast cancer cells, [18F]-FDG incorporation was decreased in H6305FU colon cancer cells compared to the parental line. By contrast, both tomudex-resistant cell lines exhibited increased [18F]-FDG incorporation compared with the parental lines. H630TDX cells exhibited higher rates of glucose transport, measured as the initial rate of O-methylglucose (OMG) uptake, compared to wild-type cells; however, glucose transport was not significantly different between H630TDX cells and the parental cells. Hexokinase activity was lower in H6305FU and MCF7TDX cells compared with sensitive parental cells but unchanged in H630TDX cells. In conclusion, our results show that [18F]-FDG incorporation is influenced by resistance to antifolate and fluoropyrimidine-based anti-cancer drugs in a drug-dependent manner and the underlying mechanisms appear to be cell- and drug-dependent. Glucose transport may be a useful marker of resistance to 5FU.

Introduction

Antifolate and fluoropyrimidine-based anti-cancer drugs including 5-fluorouracil (5FU) are commonly utilised for treating a range of cancer types including breast, colorectal, as well as head and neck tumours. Resistance, either intrinsic or acquired during the course of treatment by selection of resistant tumour cells, is a major basis of response failure to these drugs.

5FU enters cells by facilitated diffusion and is then either catabolised (over 80%) to dihydroxyfluorouracil (1) or converted to a number of different molecules with anti-cancer activity: 5-fluoro-2'-deoxyuridine monophosphate (FdUMP) which is an inhibitor of thymidylate synthase (TS); 5-fluorouridine triphosphate which is incorporated into RNA and 5-fluoro-2'-uridine triphosphate which is incorporated into DNA causing strand termination.

The enzyme TS, which is an essential component in de novo pyrimidine synthesis and believed to be the primary target of 5FU therapy, is associated with resistance to 5FU via altered expression of this enzyme (2,3). Peters et al (3) reported an inverse relationship between TS expression levels in tumour tissue and response to 5FU in patients with colorectal cancer. Consequently, studies have attempted patient stratification according to tumour TS expression as an avenue to combat 5FU resistance. However, the expression of TS in primary tumours has been found to be a poor prognostic biomarker after 5FU chemotherapy in patients with metastatic disease (4). Discordant TS expression between primary and secondary tumours has been reported (5).

S-phase specific anti-cancer drugs, including tomudex and 5FU, exploit the increased proliferation rate and hence the higher percentage of cells in the S-phase to selectively target tumour cells. This mechanism of action of cytotoxic agents underpins their toxicity profile in normal tissues. Resistance to 5FU has been reported to be associated with cell cycle arrest and consequently, to increased numbers of cells in G0/G1 or at the G0/S boundary resulting in slower growth (6). Expression of glucose-handling proteins, including the Na-independent family of glucose transporters, GLUTS, has been shown to correlate with proliferation (7,8).

Glucose transport can be measured in vivo, non-invasively, using dynamic [18F]-fluorodeoxyglucose (FDG)-positron emission tomography (PET) (9,10) from which K1 and K2, rate constants for FDG transport into and out of the cell, respectively, can be measured. K1, which is the rate constant for phosphorylation of FDG can also be determined. During the course of chemotherapy, drug-sensitive cells can be replaced by drug-resistant tumour cell populations. We previously reported...
that 5FU-resistant MCF7 breast cancer cells exhibited greatly enhanced glucose transport (11) compared with parental MCF7 cells, suggesting that enhanced glucose transport may be a feature of resistance to 5FU. In this study, we extended our research to the 5FU-resistant colorectal cell line, H630, and in view of the importance of TS inhibition on the mechanism of action of 5FU, we also measured glucose transport, hexokinase activity and [18F]-FDG incorporation in 2 cell lines resistant to the specific TS inhibitor, tomudex (ralitrexed).

Materials and methods

Cell lines. The 5FU-resistant (H630R) colorectal cancer and tomudex-resistant colorectal (H630TDX) and breast cancer cell lines (MCF7TDX) which had been generated by continuously culturing the drug-sensitive parental wild-type cell lines, H630WT, H630WT and MCF7WT, respectively in medium containing increasing concentrations of the drugs in a stepwise procedure, were a generous gift from Professor P.J. Johnstone (Department of Oncology, The Queen's University of Belfast). Cell lines were cultured in RPMI-1640 (Invitrogen, Paisley, UK) supplemented with 10% FCS, 50 U/ml penicillin and 50 µg/ml streptomycin (complete medium).

To avoid an influence of the chemotherapy drug, all resistant cell lines were cultured in drug-free medium for 3 passages before any assays.

Cytotoxicity (XTT) assay. In order to determine the sensitivity of resistant and wild-type cells to 5FU and to mudex, cells were seeded in 96-well plates and cultured in the presence of the respective drug concentrations (see below) for 72 h after which the relative cell content of each well was determined using the XTT assay. Briefly, cells were grown to 80% confluence in 7 ml of complete medium for 96 h at 37˚C and 5% CO2. To prevent the loss of OMG uptake into the cell during the incubation period, rapid washing with ice-cold PBS containing the glucose inhibitor, phloretin (100 µM), is required. Flasks of cells were seeded as described above (18F]-FDG incorporation assay). The medium was replaced 30 min prior to the OMG uptake assay with 1 ml of DMEM containing 5 mM glucose. The medium was discarded and replaced with 1 ml of DMEM containing 5 mM glucose and 37 KBq of [18F]-OMG (GE Healthcare Life Sciences, Little Chalfont, UK). The medium was rapidly removed after 5 or 10 sec of incubation with [18F]-OMG. Cells were washed rapidly 6 times with 5 ml of the ice-cold PBS. The cells were trypsinised with 0.4 ml of trypsin and neutralised with 0.4 ml of complete medium. Cell suspension (0.6 ml) was added to 5 ml of scintillation fluid (Ultima Gold, PerkinElmer, Wokingham, UK). The remaining cell suspension (0.2 ml) was retained for the bicinchoninic acid protein assay (Sigma), after dissolution in NaOH. [18F]-OMG uptake was determined on a PerkinElmer Tri-Carb 2100 scintillation counter. Uptake after 5-sec incubation with [18F]-OMG was regarded as a measure of glucose transport provided that the uptake after 10 sec was significantly higher than after 5 sec indicating that the equilibrium in the [18F]-OMG concentration between the inside and the outside of the cell had not been reached after 5 sec.

Hexokinase activity. Flasks of cells were seeded as described above ([18F]-FDG incorporation assay). Cells were trypsinised and neutralised with complete medium and centrifuged at 400 x g for 5 min at room temperature. Cells were washed in 1 ml PBS at 4˚C, centrifuged at 10,000 x g for 1 min, the supernatant was discarded and the cell pellet was snap-frozen in liquid nitrogen and stored at -80°C.

Cell pellets were homogenised immediately prior to the assay. Cells were thawed then kept on ice and resuspended in 0.2 ml of homogenisation buffer (sucrose 0.25 mM, dithiothreitol 0.5 mM, aminohexanoic acid 1 mM, PMSF 1 mM, Tris-HCl 10 mM, pH 8.0) at 4˚C. The cell suspension was transferred to a 1 ml Dounce homogeniser (Fisher Scientific Ltd., Loughborough, UK) and homogenised on ice. After centrifugation for 10 min at 1,000 x g to pellet cell debris, hexokinase activity was measured in the supernatant.

5 mM glucose and [18F]-FDG (37 KBq/ml) and cells were incubated at 37°C for 20 min. The medium was removed and cells washed 5 times in 5 ml of PBS. Cells were trypsinised with 0.4 ml of 0.05% trypsin/EDTA, neutralised with 0.4 ml of complete medium and the cell suspension transferred to a microcentrifuge tube. Cell associated activity was measured in a well counter with a Scintillation Detector Interface (Oakfield Instruments Ltd., Eynsham, UK). After centrifugation at 400 x g for 5 min, the pellet was resuspended in 0.1 ml of NaOH (1 M) for 24 h at 37°C. After neutralising with 0.1 ml of HCl (1 M), protein content was determined using the bicinchoninic acid protein assay kit (Sigma, Poole, UK).

LAW et al: DRUG RESISTANCE AND FDG INCORPORATION

[18F]-FDG incorporation. Flasks (75 cm2) of confluent cells were trypsinised, neutralised with complete medium and cell density was adjusted to 1.0x104 cells per ml. Five flasks (25 cm2) of cells were seeded with 1.0x104 cells and incubated in 7 ml of complete medium for 96 h at 37°C and 5% CO2. The medium was renewed after 72 h. To determine the rate of incorporation at 500 µM; MCF72.5 to 500 µM; MCF7WT, 0.25 to 50 nM; and MCF7TDX, 2.5 to 500 µM. MCF7WT, 0.1 to 50 nM; H630R, 0.05 to 3 mM; tomudex: H630WT, 0.1 to 50 nM; H630TDX, 2.5 to 500 µM; MCF7WT, 0.25 to 50 nM; and MCF7TDX, 2.5 to 500 µM. Medium only (background) and vehicle controls were included on each plate following drug incubation, 50 µl of XTT/PMs (4.9 ml sodium 3-[1-phenylamino-carbonyle]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene sulfonic hydrate/0.1 ml 1.25 mM PMSF was added to each well and incubated for 2 h at 37°C. Absorbance was measured at 450 and 690 nm in a 96-well plate spectrophotometer (Synergy HT; Biotek). IC50 values were calculated using GraphPad Prism software. Triplicate independent experiments were performed with triplicate data points on each plate.

Hexokinase activity. Flasks of cells were seeded as described above ([18F]-FDG incorporation assay). Cells were trypsinised and neutralised with complete medium and centrifuged at 400 x g for 5 min at room temperature. Cells were washed in 1 ml PBS at 4°C, centrifuged at 10,000 x g for 1 min, the supernatant was discarded and the cell pellet was snap-frozen in liquid nitrogen and stored at -80°C.

Cell pellets were homogenised immediately prior to the assay. Cells were thawed then kept on ice and resuspended in 0.2 ml of homogenisation buffer (sucrose 0.25 mM, dithiothreitol 0.5 mM, aminohexanoic acid 1 mM, PMSF 1 mM, Tris-HCl 10 mM, pH 8.0) at 4°C. The cell suspension was transferred to a 1 ml Dounce homogeniser (Fisher Scientific Ltd., Loughborough, UK) and homogenised on ice. After centrifugation for 10 min at 1,000 x g to pellet cell debris, hexokinase activity was measured in the supernatant.

5 mM glucose and [18F]-FDG (37 KBq/ml) and cells were incubated at 37°C for 20 min. The medium was removed and cells washed 5 times in 5 ml of PBS. Cells were trypsinised with 0.4 ml of 0.05% trypsin/EDTA, neutralised with 0.4 ml of complete medium and the cell suspension was transferred to a microcentrifuge tube. Cell associated activity was measured in a well counter with a Scintillation Detector Interface (Oakfield Instruments Ltd., Eynsham, UK). After centrifugation at 400 x g for 5 min, the pellet was resuspended in 0.1 ml of NaOH (1 M) for 24 h at 37°C. After neutralising with 0.1 ml of HCl (1 M), protein content was determined using the bicinchoninic acid protein assay kit (Sigma, Poole, UK).

[18F]-FDG incorporation. Flasks (75 cm2) of confluent cells were trypsinised, neutralised with complete medium and cell density was adjusted to 1.0x104 cells per ml. Five flasks (25 cm2) of cells were seeded with 1.0x104 cells and incubated in 7 ml of complete medium for 96 h at 37°C and 5% CO2. The medium was renewed after 72 h. To determine the rate of incorporation at 500 µM; MCF72.5 to 500 µM; MCF7WT, 0.25 to 50 nM; and MCF7TDX, 2.5 to 500 µM. Medium only (background) and vehicle controls were included on each plate following drug incubation, 50 µl of XTT/PMs (4.9 ml sodium 3-[1-phenylamino-carbonyle]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene sulfonic hydrate/0.1 ml 1.25 mM PMSF was added to each well and incubated for 2 h at 37°C. Absorbance was measured at 450 and 690 nm in a 96-well plate spectrophotometer (Synergy HT; Biotek). IC50 values were calculated using GraphPad Prism software. Triplicate independent experiments were performed with triplicate data points on each plate.

Hexokinase activity. Flasks of cells were seeded as described above ([18F]-FDG incorporation assay). Cells were trypsinised and neutralised with complete medium and centrifuged at 400 x g for 5 min at room temperature. Cells were washed in 1 ml PBS at 4°C, centrifuged at 10,000 x g for 1 min, the supernatant was discarded and the cell pellet was snap-frozen in liquid nitrogen and stored at -80°C.

Cell pellets were homogenised immediately prior to the assay. Cells were thawed then kept on ice and resuspended in 0.2 ml of homogenisation buffer (sucrose 0.25 mM, dithiothreitol 0.5 mM, aminohexanoic acid 1 mM, PMSF 1 mM, Tris-HCl 10 mM, pH 8.0) at 4°C. The cell suspension was transferred to a 1 ml Dounce homogeniser (Fisher Scientific Ltd., Loughborough, UK) and homogenised on ice. After centrifugation for 10 min at 1,000 x g to pellet cell debris, hexokinase activity was measured in the supernatant.
Hexokinase activity was measured by adding 100 µl of supernatant to 0.9 ml of hexokinase assay buffer (dextrose 10 mM, NADPH+ 0.4 mM, MgCl₂ 10 mM, ATP 5 mM, Tris-HCl 100 mM, pH 8.0 and glucose-6-phosphatase 0.15 U) in a 1 ml cuvette at 37°C. The change in absorbance at 340 nM due to the formation of NADPH was measured. The concentration of NADPH was determined from absorbance using the extinction coefficient for NADPH of 6,220 mol⁻¹ cm⁻¹.

Statistical analysis. The Student's t-test was used to demonstrate significant differences between the means.

Results

Drug sensitivity of wild-type and drug-resistant cell lines. An example growth inhibitory curve is shown in Fig. 1 (effect of 5FU on H630R10 cells and their parental controls). Table I shows the IC₅₀ of each resistant cell line and their parental controls. The IC₅₀ of 5FU in H630R10 cells was 111-fold higher than the parental H630 cells. The IC₅₀ of tomudex in H630TDX and MCF7TDX cells was more than 40,000-fold higher than the IC₅₀ for the respective parental cells.

Table I. Drug sensitivity (IC₅₀ value) of H630R₁₀, H630TDX and MCF7TDX cells and the respective parental cells.

<table>
<thead>
<tr>
<th>Drug</th>
<th>H630R₁₀</th>
<th>H630TDX</th>
<th>MCF7TDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomudex</td>
<td>-</td>
<td>255 µM</td>
<td>103 µM</td>
</tr>
<tr>
<td>5FU</td>
<td>196 µM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fold resistance</td>
<td>111</td>
<td>46,442</td>
<td>50,790</td>
</tr>
</tbody>
</table>

IC₅₀ values were derived from the dose-response curves shown in Fig. 1 using GraphPad Prism software. The IC₅₀ values of the parental cell lines are in parenthesis.

[¹⁸F]-FDG incorporation. Fig. 2 demonstrates the incorporation of [¹⁸F]-FDG during a 20-min incubation period with 37 KBq/ml of [¹⁸F]-FDG by 5FU-resistant and tomudex-resistant cells and their respective parental lines. [¹⁸F]-FDG incorporation was significantly (t=3.7, P<0.01) decreased by 5FU-resistant H630R₁₀ cells to 88% of the incorporation by parental cells. Incorporation of [¹⁸F]-FDG by H630TDX cells was significantly (t=2.33, P<0.05) increased by 13% compared with H630WT cells. MCF7TDX cells also exhibited a significantly (t=3.61, P<0.001) higher incorporation of [¹⁸F] FDG compared with MCF7WT cells.

Glucose transport ([³H]-OMG incorporation). Table II shows the uptake of [³H]-OMG 5 and 10 sec after the addition of [³H]-OMG-containing medium to drug-resistant and parental cells. OMG uptake after 10-sec incubation of each cell line with [³H]-OMG was significantly increased compared with uptake after 5 sec, indicating that the equilibrium had not been reached by 5 sec. Therefore, the incorporation of [³H]-OMG at 5 sec was considered to be an accurate measure of glucose transport. The incorporation of [³H]-OMG was significantly (t=11, P<0.0001) increased by over 100% in H630R₁₀ cells compared with parental H630 cells. The incorporation of [³H]-OMG by H630TDX cells was not significantly different (t=1.98, P>0.05) to that of H630WT cells. By contrast, the incorporation of [³H]-OMG by tomudex-resistant MCF-7 cells was significantly (t=4.8, P<0.001) increased compared with the MCF7WT cells.
Hexokinase activity. Hexokinase activity (Fig. 3) in H630_{R10} cells was significantly (t=8.0, P<0.001) lower than in parental H630 cells. Hexokinase activity in the H630_{TX} cells was not significantly (t=0.24, P>0.05) different from the H630_{WT} cells. By contrast, hexokinase activity in MCF7_{TDX} cells was significantly (t=6.1, P<0.001) decreased compared with the parental MCF7 cells.

Discussion

A rapid means of determining drug response status of tumours to chemotherapy agents has been recognised as an essential clinical tool for decades (12). Methods with the potential of determining potential responders include fresh tumour cell culture, predictive molecular biomarkers in biofluids prior to or at early treatment time-points and imaging biomarkers, such as those obtained with functional imaging modalities, for example PET. PET has the advantage that it is non-invasive and can be carried out serially. However, the relationship between [18F]-FDG-PET measurements and tumour characteristics including drug resistance remains unclear (13).

In this study, we demonstrate, using a colorectal cancer cell line, that resistance to 5FU is associated with decreased incorporation of [18F]-FDG and greatly increased glucose transport. The results are in agreement with our previous study on 5FU-resistant breast cancer cells. Conversely, resistance to tomudex is accompanied by increased [18F]-FDG incorporation whilst the correlation between glucose-transport and resistance to tomudex was found to be cell line-dependent.

Tomudex is a folate analogue which specifically inhibits TS activity. It enters the cell via folate transporters and is rapidly polyglutamated by the enzyme folylpolyglutamate synthase (FPGS) preventing its cellular efflux and increasing its affinity for TS. In common with resistance to 5FU, mechanisms of tomudex-resistance include increased TS expression, but also distinct mechanisms which include the down-regulation of the reduced folate transporter (14) and of FPGS activity (15). 5FU also has distinct TS-independent mechanisms of resistance such as increased dUTPase, cell cycle perturbations and alterations in survival pathways such as NF-κB. We examined biochemical parameters that are measurable during a dynamic [18F]-FDG-PET examination i.e., [18F]-FDG incorporation, glucose transport and hexokinase activity. There are many other factors that may influence [18F]-FDG incorporation, including the concentration of reduced NADPH (16), cytochrome C expression (17) and the rate of flux through the pentose phosphate pathway (18). These mechanisms could underlie changes in glucose utilisation by 5FU and Tomudex-resistant tumour cells and these may be chemotherapy agent and tumour specific.

Although hexokinase activity was decreased in the 2 resistant cells, MCF7_{TDX} and H630_{TDX}, compared with the parental H630_{WT} cells (present study) and 5FU-resistant MCF7 cells (11) did not exhibit any significant change in hexokinase activity. The lack of consistency in the change in hexokinase activity and type of drug resistance suggest that this is not a useful indicator of drug resistance. The difference in glucose transport by 5FU-resistant MCF7 breast cancer cells (11) and by H630_{WT} colorectal cancer cells (present study) compared with wild-type cells is high; therefore, the rate constants, K_i and K_{eq}, which measure glucose influx and efflux in dynamic FDG-PET, may be a particularly sensitive indicator of resistance to 5FU but not of resistance to tomudex. Recent studies (9,10) have shown that K_i can be a useful parameter demonstrating increased glucose transporter expression.

A number of previous studies (19-21) have examined the influence on tumour cell [18F]-FDG accumulation of the overexpression of the P-glycoprotein (P-gp/MDR1), which is a plasma membrane protein that increases the rate of efflux of diverse anti-cancer drugs, including anthracyclines and taxanes. These studies have shown that [18F]-FDG is a substrate for P-gp and consequently tumour cell P-gp expression is associated with low [18F]-FDG accumulation. However, although reduced FDG uptake via enhanced P-gp efflux may be a mechanism of altered FDG dynamics in anthracyline- or taxane-resistant tumours, 5FU is not a P-gp substrate and therefore this is unlikely to be a mechanism in tumours resistant to this agent.

In summary, in this study, we show that resistance to tomudex is associated with increased [18F]-FDG incorpor-
tion. By contrast, tumour cells resistant to other drug types (13), including 5FU, generally exhibit decreased \(^{18}F\)-FDG incorporation. Resistance of colorectal tumour cells to 5FU was also shown to be accompanied by increased glucose transport and decreased \(^{18}F\)-FDG incorporation in common with 5FU-resistant breast tumour cells (11).

Acknowledgements

This study was funded by the University of Aberdeen and Friends of Anchor.

References