Human colorectal CD24+ cancer stem cells are susceptible to epithelial-mesenchymal transition

  • Authors:
    • Miho Okano
    • Masamitsu Konno
    • Yoshihiro Kano
    • Hirotoshi Kim
    • Koichi Kawamoto
    • Masahisa Ohkuma
    • Naotsugu Haraguchi
    • Takehiko Yokobori
    • Koshi Mimori
    • Hirofumi Yamamoto
    • Mitsugu Sekimoto
    • Yuichiro Doki
    • Masaki Mori
    • Hideshi Ishii
  • View Affiliations

  • Published online on: May 23, 2014     https://doi.org/10.3892/ijo.2014.2462
  • Pages: 575-580
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Conventional cancer chemotherapy preferentially destroys non-stem cancer cells within a tumor, and a subpopulation of cancer stem cells (CSCs) is more resistant and survives, leading to relapses and metastasis. Howeve, recent studies suggest that CD24 and susceptibility to epithelial-mesenchymal transition (EMT) can serve as markers of CSCs. We report that CD24+ cells are susceptible to induction of EMT, a phenotype important for cancer metastasis. We studied the responsiveness of CSC markers to TGF-?, an effective EMT inducer. The data on CD24 demonstrated that CD24+ cells are susceptible to EMT, a phenotype important for cancer metastasis in two colorectal cancer cell lines, the CaR-1 and CCK81. CD24+ cells expressed Notch 1 in response to exposure to TGF-? in culture and showed higher tumorigenic activity compared to controls. This evidence shows that CD24+ cells are susceptible to EMT induction and to cancer progression and is indicative of the candidacy of CD24 as a therapeutic target in CSC.

References

1 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Dewi DL, Ishii H, Kano Y, Nishikawa S, Haraguchi N, Sakai D, Satoh T, Doki Y and Mori M: Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. J Gastroenterol. 46:1145–1157. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K and Mori M: Cancer stem cells and chemoradiation resistance. Cancer Sci. 99:1871–1877. 2008. View Article : Google Scholar

4 

Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y and Mori M: CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 120:3326–3339. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Kim HM, Haraguchi N, Ishii H, Ohkuma M, Okano M, Mimori K, Eguchi H, Yamamoto H, Nagano H, Sekimoto M, Doki Y and Mori M: Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Ann Surg Oncol. (Suppl 3): S539–S548. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J and Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, Andreeff M and Goodell MA: A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 98:1166–1173. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI

10 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF and Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 104:973–978. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF and Mori M: Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 24:506–513. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C and De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI

14 

O’Brien CA, Pollett A, Gallinger S and Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. 2007.PubMed/NCBI

15 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F and Vescovi AL: Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 444:761–765. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Jaggupilli A and Elkord E: Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012:7080362012. View Article : Google Scholar : PubMed/NCBI

19 

Ponti D, Zaffaroni N, Capelli C and Daidone MG: Breast cancer stem cells: an overview. Eur J Cancer. 42:1219–12124. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G and Medema JP: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 105:13427–13432. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Todaro M, Francipane MG, Medema JP and Stassi G: Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 138:2151–2162. 2010. View Article : Google Scholar : PubMed/NCBI

22 

King JB, von Furstenberg RJ, Smith BJ, McNaughton KK, Galanko JA and Henning SJ: CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice. Am J Physiol Gastrointest Liver Physiol. 303:G443–G452. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Ke J, Wu X, Wu X, He X, Lian L, Zou Y, He X, Wang H, Luo Y, Wang L and Lan P: A subpopulation of CD24+ cells in colon cancer cell lines possess stem cell characteristics. Neoplasma. 59:282–288. 2012.

24 

Espinoza I and Miele L: Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 341:41–45. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H and Nakauchi H: TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 113:1250–1256. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Gekara NO and Weiss S: Lipid rafts clustering and signalling by listeriolysin O. Biochem Soc Trans. 32:712–714. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Yu X, Wang J, Feizpour A and Reinhard BM: Illuminating the lateral organization of cell-surface CD24 and CD44 through plasmon coupling between Au nanoparticle immunolabels. Anal Chem. 85:1290–1294. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2014
Volume 45 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Okano, M., Konno, M., Kano, Y., Kim, H., Kawamoto, K., Ohkuma, M. ... Ishii, H. (2014). Human colorectal CD24+ cancer stem cells are susceptible to epithelial-mesenchymal transition. International Journal of Oncology, 45, 575-580. https://doi.org/10.3892/ijo.2014.2462
MLA
Okano, M., Konno, M., Kano, Y., Kim, H., Kawamoto, K., Ohkuma, M., Haraguchi, N., Yokobori, T., Mimori, K., Yamamoto, H., Sekimoto, M., Doki, Y., Mori, M., Ishii, H."Human colorectal CD24+ cancer stem cells are susceptible to epithelial-mesenchymal transition". International Journal of Oncology 45.2 (2014): 575-580.
Chicago
Okano, M., Konno, M., Kano, Y., Kim, H., Kawamoto, K., Ohkuma, M., Haraguchi, N., Yokobori, T., Mimori, K., Yamamoto, H., Sekimoto, M., Doki, Y., Mori, M., Ishii, H."Human colorectal CD24+ cancer stem cells are susceptible to epithelial-mesenchymal transition". International Journal of Oncology 45, no. 2 (2014): 575-580. https://doi.org/10.3892/ijo.2014.2462