Estrogen receptor β selective agonists reduce invasiveness of triple-negative breast cancer cells

OLIVER HINSCHE, RAINER GIRGERT, GÜNTER EMONS and CARSTEN GRÜNDKER

Department of Gynecology and Obstetrics, Georg-August University, Göttingen 37075, Germany

Received September 17, 2014; Accepted October 30, 2014

DOI: 10.3892/ijo.2014.2778

Abstract. Metastasis to bone is a frequent problem of advanced breast cancer. Particularly breast cancers, which do not express estrogen receptor α (ERα) and progesterone receptor (PR) and which have no overexpression of human epidermal growth factor receptor 2 (HER2), so-called triple-negative breast cancers (TNBCs), are considered as very aggressive and have a poor prognosis. Recently we have shown that breast cancer cell invasion was dramatically increased when co-cultured with MG63 osteoblast-like cells. Using this model we have now analyzed whether estrogen receptor β (ERβ) plays a role in TNBC cell invasion in vitro. ERα and ERβ protein expression was analyzed using western blot analysis. Invasion was quantified by assessment of TNBC cell migration rate through an artificial basement membrane in a modified Boyden chamber during co-culture with MG63 osteoblast-like cells. The effects of ERβ agonist treatment on CXC motif chemokine receptor 4 (CXCR4) protein expression during co-culture with MG64 cells was quantified using western blot analysis. Proliferation was measured using alamarBlue assay.

Correspondence to: Dr Carsten Gründker, Department of Gynecology and Obstetrics, Georg-August University, Robert Koch Street 40, Göttingen 37075, Germany E-mail: grundker@med.uni-goettingen.de

Abbreviations: 3βA-diol, 5α-androstane-3β,17β-diol; ATCC, American Type Culture Collection; CXCR4, CXC motif chemokine receptor 4; DMEM, Dulbecco’s minimal essential medium; ECM, extracellular matrix; EDTA, ethylenediaminetetraacetic acid; EGF, epithelial growth factor; ERα, estrogen receptor α; ERβ, estrogen receptor β; cs-FCS, charcoal-stripped fetal calf serum; GPER1, G protein-coupled estrogen receptor 1; GPR30, G protein-coupled receptor 30; HER2, human epidermal growth factor receptor 2; HSD, honestly significant difference; IgG, immunoglobulin G; PBS, phosphate-buffered saline; PVDF, polyvinylidenefluorid; SDF-1, stromal-derived factor-1; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; siRNA, small interfering RNA; TBST, Tris-buffered saline and Tween-20; TNBC, triple-negative breast cancer; Tris-HCl, Tris(hydroxymethyl)aminomethane HCl; VEGF, vascular endothelial growth factor

Key words: ERβ, migration, invasion, metastasis, triple-negative breast cancer

TNBC cell lines HCC1806 and HCC1937 showed no ERα but high ERβ protein expression. Cell invasion of HCC1806 and HCC1937 TNBC cells was significantly increased when co-cultured with MG63 osteoblast-like cells. Treatment with ERβ selective estrogen agonists liquiritigenin and ERB-041 reduced the ability to invade a reconstituted basement membrane and to migrate in response to the cellular stimulus. During co-culture CXCR4 protein expression of TNBC cell lines HCC1806 and HCC1937 was significantly increased. Treatment with liquiritigenin resulted in a significant decrease of CXCR4 protein expression. Both ERβ agonists showed no effect on TNBC cell proliferation. Our findings suggest that ERβ plays a major role in TNBC invasion. Bone-directed invasion can be inhibited by ERβ agonists.

Introduction

About 10-15% of breast cancers do not express estrogen receptor α (ERα) and progesterone receptor (PR) and have no overexpression of human epidermal growth factor receptor 2 (HER2) (1-3). These so-called triple-negative breast cancers (TNBCs) are considered as very aggressive and have a poor prognosis. The most common organ for metastasis formation of breast cancer is bone, followed by lung and liver (4). Between 60 and 70% of women who die from breast cancer have lung metastases. In 21% of cases, lung is the only site of metastasis (5,6). Liver metastases develop in ~50% of women with metastatic breast cancer, and are typically associated with metastases at other sites, indicating advanced disease and poor prognosis (7). Breast cancer may also spread to other sites in the body. Though these sites are less common, breast cancer may infect brain, ovaries, spinal cord, eye, and other organs. Recently, we showed that invasion of breast cancer cells through an artificial basement membrane was increased when they were co-cultured with human primary osteoblasts (hOB) or with MG63 osteoblast-like osteosarcoma cells (8,9).

ERα is absent in TNBC. Estrogen receptor β (ERβ), however, might play a role in TNBC. ERβ is expressed in normal breast tissue at higher levels than in tissues from breast cancers (10,11). Expression of ERβ was detected in many TNBCs and was shown to be associated with decreased invasiveness and decreased progression of TNBC. In addition, expression of ERβ in TNBCs is associated with a significantly increased disease-free survival of the patients (10,11).
The 5-year survival of patients with ERβ-positive TNBC was clearly better than the 5-year survival of patients with ERβ-negative TNBC. ERβ expression seems to be an independent marker for clinical outcome and survival of patients with TNBC (12,13). Decreased ERβ expression was correlated with an increased progression and invasiveness of TNBC. In addition, ERβ-negative breast cancers showed higher tumor volume and increased lymph node metastasis at the time of diagnosis. These characteristics indicate an antiproliferative role of ERβ (11). In some studies ERβ was described to be antagonistic to ERα (12).

In the present study, we have analyzed whether ERβ plays a role in TNBC cell invasion in vitro. We assessed whether TNBC cell invasion can be inhibited by treatment with ERβ agonists. Since the stromal-derived factor-1 (SDF-1)/CXCL12 motif chemokine receptor 4 (CXCR4) system seems to play an important role in tumor cell invasion (8,9,14), the effects of ERβ agonist treatment on CXCR4 protein expression were also analyzed.

Materials and methods

Cell lines and culture conditions. Human breast cancer cell lines HCC1806, HCC1937 and MCF-7 and osteoblast-like osteosarcoma cell line MG63 were obtained from American Type Culture Collection (ATCC) (Manassas, VA, USA). In order to guarantee the identity of the cell lines over the years, cells were expanded after purchase and aliquots were stored in liquid nitrogen. Every half year a new frozen stock was opened and expanded to carry out the experiments.

The breast cancer cell lines (plating density: 4x10^3 cells/cm²) were cultured at 37°C in a humidified atmosphere of 5% CO₂ in air in phenol red-free Dulbecco's minimal essential medium (DMEM) (PAA Laboratories GmbH, Pasching, Austria) supplemented with 10% charcoal-stripped fetal calf serum (cs-FCS) from Allgaue BioTech Service (Görisried, Germany). Cell lines and culture conditions.

Co-culture and microinvasion assay. Invasion was measured by assessment of the breast cancer cell migration rate through an artificial basement membrane in a modified Boyden chamber, where the breast cancer cells and the MG63 cells were grown without direct cell-to-cell contact. The membrane of the cell culture insert (upper well) consisted of polycarbonate (8 μm pore diameter; Millipore, Schwabach, Germany) and was coated with Matrigel® extracellular matrix (ECM) gel; Becton-Dickinson Biosciences, Heidelberg, Germany) diluted at 1:2 in serum-free DMEM. The breast cancer cells were seeded into the upper wells (inserts) of the chamber, while the MG63 cells were seeded into the lower wells. The cells were cultured in DMEM supplemented with 10% cs-FCS without phenol red for 12 h to allow the cells to attach. Thereafter the upper wells were placed on top of the lower wells (time point t₀) and the breast cancer cells were treated right away with ERβ selective estrogen agonist liquiritigenin (10⁻¹¹–10⁻⁸ M) or ERB-041 (10⁻¹ⁱ–10⁻⁵ M). After 48 h (t₄₈) treatment was repeated. Controls were performed by omission of the MG63 cells. After 72 h (t₇₂) or 96 h (t₉₆) the invaded breast cancer cells under the membrane were counted. After culture, the upper wells were fixed and the inner surface of the upper chambers was carefully wiped using cotton swabs to remove non-invaded tumor cells. Invaded tumor cells located under the membrane were stained using Mayer's hemalum solution and counted.

Proliferation assay. Cell lines were grown (plating density: 1-2x10⁴ cells/well) in 96-well plates depending on their metabolism in phenol red-free medium (DMEM; Gibco®-Life Technologies, Darmstadt, Germany) supplemented with 10% charcoal-treated fetal calf serum (PAN-Biotech GmbH, Aidenbach, Germany), L-glutamine (2 μmol/ml) (Biochrom, Berlin, Germany), penicillin (100 U/ml) and streptomycin (100 μg/ml) (Gibco®-Life Technologies) at 37°C in a humidified atmosphere of 5% CO₂ in air overnight. Liquiritigenin or ERB-041 solutions and vehicle (control) were added in final concentrations of 10⁻¹¹–10⁻⁵ M every 48-120 h. Proliferation was determined by a colorimetric assay (alamarBlue®; AbD Serotec, Oxford, UK). Changes in viability were used as marker for proliferation. Optical density of the reduced dye was measured at 570 vs. 630 nm by a microplate reader (Synergy HT; BioTek, Winooski, VT, USA).

Western blot analysis. ERα and ERβ protein expression in HCC1806 and HCC1937 TNBC cells was analyzed using western blot analysis. The breast cancer cell line MCF-7 was used as positive control. MCF-7 cells after ERβ knockdown were used as ERβ negative control. MCF-7 cells were transfected with small interfering RNA (siRNA) against estrogen receptor ERβ (sc-35325) for gene silencing or with a non-specific control siRNA (sc-37007; both from Santa Cruz Biotechnology, Inc., Dallas, TX, USA). Transfection was performed as previously described (15). ERα and ERβ protein expression was evaluated by western blot analysis. Cells were washed twice with phosphate-buffered saline (PBS) and resuspended with Cellytic buffer (Sigma, Deisenhofen, Germany) containing protease inhibitors (Sigma). Equal amounts of proteins per sample were used and diluted in Laemmli buffer. The proteins were separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (10%, PROteintech, glass gel) and proteins were blotted to PVDF membranes (Millipore). The PVDF membranes were blocked with 5% instant skimmed milk powder, spray dried (Naturflor; Töpfer GmbH, Dietmannsried, Germany) in Tris-buffered saline and Tween-20 (TBST) [137 mmol/l NaCl, 2.7 mmol/l KCl, 0.1% Tween-20, 25 mmol/l Tris(hydroxymethyl)aminomethane HCl (Tris-HCl) (pH 7.4)] for 1 h at room temperature, washed with TBST, and incubated at 4°C overnight with the monoclonal rabbit anti-human ERα (Abcam, Cambridge, UK) or the monoclonal goat anti-human ERβ antibody (Abcam) in an 1:1,000 or 1:5,000 dilutions in TBST, respectively and then, following washings, incubated at room temperature with horseradish peroxidase-conjugated anti-rabbit immunoglobulin G (IgG) (GE Healthcare Europe GmbH, Freiburg, Germany) at an 1:20,000 dilution in TBST for 1 h. After washings, specifically bound antibody was detected using the enhanced chemiluminescence kit (Millipore). CXCR4 protein expression in HCC1806 and HCC1937 TNBC cells during co-culture with MG64 cells and treatment without or with ERβ agonists liquiritigenin (10⁻¹¹–10⁻⁵ M) or ERB-041 (10⁻¹¹–10⁻⁵ M) was quantified using western blot

Hinsche et al: ERβ and triple-negative breast cancer metastasis

879
analysis. After 24 h of treatment the cells were detached immediately with 0.5 g trypsin (Biochrom) and 5 mmol ethylenediaminetetraacetic acid (EDTA) in 1 l PBS/bovine serum albumin and processing was done as described above. Monoclonal mouse anti-human CXCR4 antibody (Invitrogen Life Technologies, Karlsruhe, Germany) in an 1:1,000 dilution in TBST was used for detection. For quantification the bands were analyzed using a Biometra BioDoc Analyze system (Biometra GmbH, Goettingen, Germany).

Statistical analysis. All experiments were repeated twice with different passages of the respective cell lines. The data were tested for significant differences by unpaired two-tailed t-test or by one-way analysis of variance followed by Tukey's honestly significant difference (HSD) test using GraphPad Prism 6.01 software (GraphPad Software, Inc., La Jolla, CA, USA).

Results

ERα and ERβ protein expression. Using western blot analysis ERα protein expression was found in the breast cancer cell line MCF-7, but as expected, not in the TNBC cell lines HCC1806 and HCC1937 (Fig. 1A). ERβ protein expression was shown in MCF-7, HCC1806, and HCC1937 cells (Fig. 1B). ERβ knockdown using siRNA resulted in a clear decrease of ERβ protein expression demonstrating the specificity of ERβ detection (Fig. 1B).

Effects of ERβ agonist treatment on TNBC cell invasion. In the ERβ-positive TNBC cell lines HCC1806 and HCC1937, the number of invaded cells was increased if co-cultured with MG63 osteoblast-like cells (Fig. 2). Invasion of HCC1806 cells was dramatically increased to 3,680±610% SEM vs. control (=100%; p<0.001) after 72 h of co-culture with MG63 cells (Fig. 2A). HCC1937 cells showed significantly increased invasion to 602±14% SEM vs. control (=100%; p<0.001) after 96 h of co-culture with MG63 cells (Fig. 2B). This increased invasion rate was dose-dependently inhibited by treatment with increasing concentrations (10⁻¹⁰-10⁻⁵ M) of ERβ agonist liquiritigenin (Fig. 3A and B) or of ERβ agonist EB-041 (Fig. 3C and D). In control experiments treatment with 17β-estradiol (E2) showed no significant effects on TNBC cell invasion (not shown).

Treatment of HCC1806 cells during co-culture with MG63 cells with liquiritigenin on time points t=0 and 48 h for 72 h resulted in a dose-dependent decrease of invasion [10⁻¹⁰ M: 96.0±11.5% SEM vs. co-culture (=100%); 10⁻⁹ M: 79.3±6.8% SEM vs. co-culture (=100%); 10⁻⁸ M: 68.2±10.1%
Effects of ERβ agonist treatment on CXCR4 protein expression.

Since the CXCR4/SDF-1 system plays a major role in tumor cell invasion (8,9,14), the effects of ERβ agonist liquiritigenin treatment on CXCR4 protein expression were analyzed. To determine whether treatment with ERβ agonist liquiritigenin can affect CXCR4 protein expression of HCC1806 and HCC1937 cells in co-culture with MG63 cells, the amount of CXCR4 protein was quantified. CXCR4 protein expression was significantly increased to 196.2±14.0% versus control (=100%; p<0.01) when HCC1806 cells were co-cultured with MG63 cells for 24 h (Fig. 4A). CXCR4 protein expression in HCC1937 cells was increased to 225.3±36.7% versus control (=100%; p<0.01) after 24 h of co-culture with MG63 cells (Fig. 4B).

To analyze whether ERβ agonist liquiritigenin treatment affects CXCR4 protein expression of HCC1806 and HCC1937 cells in co-culture with MG63 cells, increasing concentrations of liquiritigenin (final concentrations: 10^{-11}-10^{-5} M) were added...
for 24 h. CXCR4 protein expression was significantly reduced by liquiritigenin treatment in both cell lines. When HCC1806 cells were treated with liquiritigenin for 24 h CXCR4 protein expression was reduced as follows: 10^{-11} M: 137.4±22.6% SEM vs. co-culture (=196.2±14.0% SEM); 10^{-9} M: 120.0±13.4% SEM vs. co-culture (=196.2±14.0% SEM; p<0.05); 10^{-7} M: 152.8±16.9% SEM vs. co-culture (=196.2±14.0% SEM); 10^{-5} M: 12.6±2.9% SEM vs. co-culture (=196.2±14.0% SEM; p<0.05) (fig. 4a). After 24 h of treatment with liquiritigenin, CXCR4 protein expression in HCC1937 cells was reduced to: 10^{-11} M: 199.0±34.9% SEM vs. co-culture (=225.3±36.7% SEM); 10^{-9} M: 176.0±14.5% SEM vs. co-culture (=225.3±36.7% SEM); 10^{-7} M: 98.8±10.5% SEM vs. co-culture (=225.3±36.7% SEM; p<0.01); 10^{-5} M: 128.8±13.6% SEM vs. co-culture (=225.3±36.7% SEM; p<0.05) (fig. 4B).

Effects of ERβ agonist treatment on cell proliferation. We analyzed whether ERβ agonist treatment affects proliferation of HCC1806 (fig. 5a and c) and HCC1937 (fig. 5B and D) TNBC cells. Proliferation was measured after treatment without or with increasing concentrations (10^{-11}-10^{-5} M) of ERβ agonists liquiritigenin (fig. 5a and B) and ERB-041 (fig. 5c and D) on time points t=12 and 72 h for 120 h. Under both treatments, no effects on proliferation were detected in either cancer cell line. Treatment of HCC1806 cells with increasing concentrations of liquiritigenin for 120 h gave results as follows: 10^{-11} M: 97.7±5.6% SEM vs. control (=100%); 10^{-9} M: 85.4±3.2% SEM vs. control (=100%); 10^{-7} M: 91.6±1.0% SEM vs. control (=100%); 10^{-5} M: 106.0±15.0% SEM vs. control (=100%) (fig. 5B). Treatment of HCC1806 cells with increasing concentrations of ERB-041 for 120 h gave the following results: 10^{-11} M: 107.0±7.9% SEM vs. control (=100%); 10^{-9} M: 107.0±4.8% SEM vs. control (=100%); 10^{-7} M: 101.4±8.6% SEM vs. control (=100%); 10^{-5} M: 101.0±8.4% SEM vs. control (=100%) (fig. 5B). Treatment of HCC1937 cells with increasing concentrations of ERB-041 for 120 h gave the following results: 10^{-11} M: 97.0±5.6% SEM vs. control (=100%); 10^{-9} M: 104.6±5.1% SEM vs. control (=100%); 10^{-7} M: 111.0±5.7% SEM vs. control (=100%); 10^{-5} M: 109.0±7.7% SEM vs. control (=100%) (fig. 5D). In conclusion, ERβ agonists have no effects on TNBC cell proliferation. In control experiments treatment with E2 resulted in a slight increase of proliferation of TNBC cells (not shown).

Discussion

In this study we have shown that TNBC cell lines HCC1806 and HCC1937 express high amounts of ERβ protein. As expected, ERα expression was not found. MCF-7 cells were shown to express both, ERα and ERβ proteins. Chen and Russo have shown that a large number of TNBC of female patients express ERβ (12). In the literature ERβ expression is associated with inhibition of tumor growth and invasion (10,16). Invasion of TNBC cell lines HCC1806 and HCC1937 through an artificial basement membrane was significantly increased when co-cultured with MG63 osteoblast-like cells. The increase of invasion of HCC1806
The ability to invade the basement membrane and to migrate in response to this cellular stimulus of both TNBC cell lines was dose-dependently reduced by treatment with liquiritigenin and ERB-041. Liquiritigenin, a natural compound isolated from the roots of Glycyrrhiza uralensis and the substance ERB-041 are both selective agonists of ERβ (17). Both substances show anti-inflammatory and cancer suppressing characteristics (18). Treatment of HCC1806 cells with ERB-041 showed no dose-dependent effect, however, inhibition of invasion was significant with some concentrations. These results support the hypothesis that ERβ and thus its selective agonists have an anti-invasive function in TNBCs. Chaudhary et al was able to demonstrate that the selective ERβ agonist ERB-041 inhibits UVB-light-induced carcinogenesis in SKH-1 mice. The authors postulated that selective ERβ agonists do not only reduce tumor development but in addition progression into an aggressive and invasive tumor phenotype (19). Moreover, Samanta et al showed that activation of ERβ with selective ERβ agonist 5α-androstane-3β,17β-diol (3βA-diol) resulted in reduction of invasion and migration in TNBCs (20), causing the inhibition of epithelial growth factor (EGF) receptor expression by ERβ and the associated suppression of IMP3 expression. IMP3 is normally responsible for migration and invasion of TNBCs (20). This is supported by Lindberg et al showing that expression of ERβ in TNBCs is correlated with decreased invasion and progression (10).

Different studies have shown that ERβ agonists also reduce growth of ERβ-positive tumors. Liu et al have shown that liquiritigenin reduced tumor growth of human HeLa tumors in nude mice via inhibition of vascular endothelial growth factor (VEGF) expression (18). Shanle et al have shown antitumor action of liquiritigenin in the TNBC reporter cell line Hs578T-ERβ (17). However, in HCC1806 and HCC1937 TNBC cell lines no antiproliferative effects of selective ERβ agonists liquiritigenin and ERB-041 could be detected. In control experiments we showed that treatment with E2 resulted in a slight increase of proliferation of TNBC cells. This increase of proliferation by E2 was dependent on G protein-coupled estrogen receptor 1 (GPER1) and G protein-coupled receptor 30 (GPR30), as it was completely prevented by knockdown of GPER1 expression using specific siRNA (15).

Different studies have shown that CXCR4 is the most frequently expressed chemokine receptor in breast cancer and promotes together with its ligand SDF-1 growth, invasion and metastasis in an organ-specific manner. Müller et al found CXCR4 to be highly expressed in breast cancer cells, malignant breast tumors and metastases (21). On the other hand, peak levels of ligand SDF-1 occurred in the organs that represent the initial destinations of breast cancer metastasis (i.e., lymph nodes, lung, liver and bone marrow). In a retrospective study it was found that CXCR4 overexpression is correlated with a significantly increased risk of recurrence and cancer-caused deaths in patients with

Figure 5. Effects of selective estrogen receptor β (ERβ) agonist treatment on proliferation of HCC1806 and HCC1937 triple-negative breast cancer (TNBC) cells co-cultured with MG63 osteoblast-like cells. Number of (A and C) HCC1806 and (B and D) HCC1937 cells after treatment without or with increasing concentrations (10−11-10−5 M) of ERβ agonists (A and B) liquiritigenin and (C and D) ERB-041 on time points t=12 and 72 h for 120 h. Columns represent means ± SEM of data obtained from three independent experiments run in duplicate in three different passages of the cell lines.
TNBC (22). Therefore we analyzed whether treatment with ERβ agonists has influence on CXCX4 expression in TNBC cells. When TNBC cells were co-cultured with MG63 cells, CXCX4 protein expression of co-cultured TNBC cells was significantly increased. These results further support that CXCX4 expression positively correlates with breast cancer cell invasion. Sobolik et al postulate that CXCX4 expression drives the metastatic phenotype in breast cancer (23). The CXCX4/SDF-1 system is closely correlated with breast cancer metastasis and supports invasion of TNBC (24). In the present study we were able to demonstrate that treatment with selective ERβ agonist liquiritinigenin resulted in a significant decrease of CXCX4 protein expression in TNBC cell lines HCC1806 and HCC1937. Inhibition of CXCX4 expression in TNBC xenografts was shown to reduce lung and lymph node metastasis (25). Knockdown of CXCX4 expression in MDA-MB-231 breast cancer cells resulted in a significant decrease of invasiveness further demonstrating the correlation between CXCX4 expression and breast cancer cell invasiveness (26). All these results confirm that CXCX4 plays a crucial role in breast cancer invasion and represents a pro-metastatic factor.

Our data represent the first report that selective activation of ERβ reduces the metastatic potential of TNBC cells. Since treatment with ERβ agonists reduces breast cancer cell invasion and CXCX4 protein expression, an important pro-metastatic factor, the use of ERβ agonists might be a novel anti-metastatic therapeutic approach and should be further explored.

Acknowledgements

We thank Sonja Blume for excellent technical assistance.

References