Downregulation of miR-95-3p inhibits proliferation, and invasion promoting apoptosis of glioma cells by targeting CELF2

  • Authors:
    • Bo Fan
    • Bao-Hua Jiao
    • Feng-Shi Fan
    • Sheng-Kui Lu
    • Jian Song
    • Cheng-Yong Guo
    • Jian-Kai Yang
    • Liang Yang
  • View Affiliations

  • Published online on: July 10, 2015     https://doi.org/10.3892/ijo.2015.3080
  • Pages: 1025-1033
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gliomas are the most common and aggressive types of tumors in human brain, of which the prognosis remains dismal because of their biological behavior. The involvement of miRNAs in tumorigenesis of various kinds of cancers drives us to explore new miRNAs related to gliomas. We measured expression level of miR‑95‑3p by qRT-PCR in human glioma and non-neoplasm brain tissues and found that higher level of miR‑95‑3p in glioma tissues of higher grade. Biological functions of miR‑95‑3p on glioma cells were investigated by MTT assay, flow cytometry and transwell assay. We discovered the cell lines transfected with miR‑95‑3p ASO (antisense oligonucleotide) had retarded proliferation and invasion but enhanced apoptosis ability. We searched on-line tool Targetscan and selected CELF (CUGBP- and ETR-3-like family 2) as a putative target. Luciferase reporter was employed to confirm the binding sites in 3'UTR region of CELF2 for miR‑95‑3p. The correlation between expression of CELF2 and miR‑95‑3p was determined by western blotting and qRT-PCR both in cell lines and human samples. Results showed CELF2 was a direct target of miR‑95‑3p and expression levels of CELF2 and miR‑95‑3p were negatively correlated. Finally, CELF2 largely abrogated the effects of miR‑95‑3p on proliferation, invasion and apoptosis of glioma cells in rescue experiments, which verified the role of CELF2 in miR‑95‑3p regulating glioma biological behavior. In conclusion, our data suggest the expression level of miR‑95‑3p is positively related to glioma grade and downregulation of miR‑95‑3p affects proliferation, invasion and apoptosis of glioma cells by targeting CELF2. We identified miR‑95‑3p as a putative therapeutic target and CELF2 as a potential tumor suppressor.

References

1 

Giese A, Bjerkvig R, Berens ME and Westphal M: Cost of migration: Invasion of malignant gliomas and implications for treatment. J Clin Oncol. 21:1624–1636. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Lefranc F, Brotchi J and Kiss R: Possible future issues in the treatment of glioblastomas: Special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol. 23:2411–2422. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Singh SK, Clarke ID, Hide T and Dirks PB: Cancer stem cells in nervous system tumors. Oncogene. 23:7267–7273. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al: Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Eulalio A, Huntzinger E and Izaurralde E: Getting to the root of miRNA-mediated gene silencing. Cell. 132:9–14. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Carthew RW: Gene regulation by microRNAs. Curr Opin Genet Dev. 16:203–208. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar

9 

Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Bagnoli M, De Cecco L, Granata A, Nicoletti R, Marchesi E, Alberti P, Valeri B, Libra M, Barbareschi M, Raspagliesi F, et al: Identification of a chrXq27.3 microRNA cluster associated with early relapse in advanced stage ovarian cancer patients. Oncotarget. 2:1265–1278. 2011.

11 

Iorio MV and Croce CM: microRNA involvement in human cancer. Carcinogenesis. 33:1126–1133. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, Van Brocklyn J, Ostrowski MC, Chiocca EA and Lawler SE: MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 37:620–632. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, et al: Human glioma growth is controlled by microRNA-10b. Cancer Res. 71:3563–3572. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 69:7569–7576. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM and Farace MG: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 334:1351–1358. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, Xu W, Xu H, Lin MC and Jiang S: MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS One. 8:e830552013. View Article : Google Scholar :

18 

Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA and Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68:9125–9130. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, et al: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI

20 

Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, Xiang C, Poisson L, deCarvalho AC, Slavin S, et al: MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget. 4:665–676. 2013.PubMed/NCBI

21 

Skalsky RL and Cullen BR: Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS One. 6:e242482011. View Article : Google Scholar : PubMed/NCBI

22 

Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X and Du X: MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res. 71:2582–2589. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al: miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q and Chen C: Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg. 33:698–709. 2009. View Article : Google Scholar

25 

Xiao Z, Ching Chow S, Han Li C, Chun Tang S, Tsui SK, Lin Z and Chen Y: Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol. 728:141–150. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A and Learn-Han L: Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers. Int J Mol Med. 28:327–336. 2011.PubMed/NCBI

27 

Barreau C, Paillard L, Méreau A and Osborne HB: Mammalian CELF/Bruno-like RNA-binding proteins: Molecular characteristics and biological functions. Biochimie. 88:515–525. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Keene JD: RNA recognition by autoantigens and autoantibodies. Mol Biol Rep. 23:173–181. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Ladd AN and Cooper TA: Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. J Cell Sci. 117:3519–3529. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Wang GS, Kearney DL, De Biasi M, Taffet G and Cooper TA: Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest. 117:2802–2811. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Choi DK, Ito T, Mitsui Y and Sakaki Y: Fluorescent differential display analysis of gene expression in apoptotic neuroblastoma cells. Gene. 223:21–31. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Pershouse MA, Stubblefield E, Hadi A, Killary AM, Yung WK and Steck PA: Analysis of the functional role of chromosome 10 loss in human glioblastomas. Cancer Res. 53:5043–5050. 1993.PubMed/NCBI

33 

Ransom DT, Ritland SR, Moertel CA, Dahl RJ, O'Fallon JR, Scheithauer BW, Kimmel DW, Kelly PJ, Olopade OI, Diaz MO, et al: Correlation of cytogenetic analysis and loss of heterozygosity studies in human diffuse astrocytomas and mixed oligo-astrocytomas. Genes Chromosomes Cancer. 5:357–374. 1992. View Article : Google Scholar : PubMed/NCBI

34 

Subramaniam D, Natarajan G, Ramalingam S, Ramachandran I, May R, Queimado L, Houchen CW and Anant S: Translation inhibition during cell cycle arrest and apoptosis: Mcl-1 is a novel target for RNA binding protein CUGBP2. Am J Physiol Gastrointest Liver Physiol. 294:G1025–G1032. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Natarajan G, Ramalingam S, Ramachandran I, May R, Queimado L, Houchen CW and Anant S: CUGBP2 down-regulation by prostaglandin E2 protects colon cancer cells from radiation-induced mitotic catastrophe. Am J Physiol Gastrointest Liver Physiol. 294:G1235–G1244. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA and Anant S: RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One. 6:e169582011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2015
Volume 47 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fan, B., Jiao, B., Fan, F., Lu, S., Song, J., Guo, C. ... Yang, L. (2015). Downregulation of miR-95-3p inhibits proliferation, and invasion promoting apoptosis of glioma cells by targeting CELF2. International Journal of Oncology, 47, 1025-1033. https://doi.org/10.3892/ijo.2015.3080
MLA
Fan, B., Jiao, B., Fan, F., Lu, S., Song, J., Guo, C., Yang, J., Yang, L."Downregulation of miR-95-3p inhibits proliferation, and invasion promoting apoptosis of glioma cells by targeting CELF2". International Journal of Oncology 47.3 (2015): 1025-1033.
Chicago
Fan, B., Jiao, B., Fan, F., Lu, S., Song, J., Guo, C., Yang, J., Yang, L."Downregulation of miR-95-3p inhibits proliferation, and invasion promoting apoptosis of glioma cells by targeting CELF2". International Journal of Oncology 47, no. 3 (2015): 1025-1033. https://doi.org/10.3892/ijo.2015.3080