Abstract. Increasing evidence has confirmed that dysregulation of microRNAs (miRNAs) can contribute to the progression and metastasis of human tumors. Previous studies have shown dysregulation of miR-24 in a variety of tumors. However, the roles of miR-24 in human bladder cancer have not been well clarified. Therefore, we investigated the biological functions and molecular mechanisms of miR-24 in human bladder cancer cell lines, evaluating whether it could be a therapeutic biomarker of bladder cancer in the future. In our study, we found that miR-24 is downregulated in human bladder cancer cell lines. Moreover, the low level of miR-24 was associated with increased expression of CARMA3 in bladder cancer cells. Upregulation of miR-24 significantly inhibited proliferation, arrested cell cycle and induced apoptosis in bladder cancer cells. In addition, invasion and epithelial to mesenchymal transition (EMT) of bladder cancer cells was suppressed by overexpressing miR-24. Bioinformatics analysis predicted that the CARMA3 was a potential target gene of miR-24. Further study by luciferase reporter assay demonstrated that miR-24 could directly target CARMA3. Overexpression of CARMA3 in bladder cancer cells transfected with miR-24 mimic partially reversed the inhibitory effect of miR-24. In conclusion, miR-24 inhibited cell proliferation, invasion and EMT in bladder cancer cells by downregulation of CARMA3, and that downregulation of CARMA3 was essential for the miR-24-inhibited cell proliferation, invasion and EMT in bladder cancer cells.

Introduction

Bladder cancer (BC) is the fifth most common cancer in the developed countries (1). BCs are classified into non-muscle and muscle invasive BC (2,3). The 5-year survival rate for non-muscle invasive BC (NMIBC) is close to 90%, but that of patients with muscle invasive BC is only ~60% (4). Although most bladder cancer (75-80%) can be diagnosed as NMIBC, the recurrence rates of the NMIBC are high (50-70%), and some cases become muscle invasive at recurrence (5,6). Recently, major advances in therapy have been made, including chemotherapy, radiotherapy and improved surgical operation, but no effective treatments have been found for advanced BC by clinical trials (7,8). Therefore, novel prognostic markers combine with effective therapies based on RNA network analyses are considered to be an appropriate way for treatment of BC.

MicroRNAs (miRNAs) are small (~22 nucleotides in length), non-coding RNAs (9), miRNAs degrade or suppress their translation and regulate a series of cell functions such as proliferation, apoptosis, invasion and differentiation, by binding to complementary sequences in the 3'-UTRs of targeted mRNAs (10,11). More and more evidence suggests that miRNAs are involved in various kinds of tumors (12). Many miRNAs have been identified to act as tumor suppressors or oncogenes in BC, which is dependent on the role of their target genes, including miR-34a (13), miR-124 (14), miR-320c (15), miR-451 (16), miR-576-3p (17), miR-19a (18), miR-137 (19), and miR-222 (20). These outcomes show a strong basis for the importance of miRNAs in the pathogenesis of BC and emphasize the implications of miRNAs in diagnosis, therapy, and prognosis of BC.

miR-24 has attracted much attention because it is frequently downregulated and functions as a tumor suppressor in gastric cancer and osteosarcoma (21,22), and is also upregulated and functions as an oncogene in breast cancer and hepatocellular carcinoma (23,24). However, the functional role of miR-24 in BC is still unknown. In this report, we determined frequent downregulation of miR-24 in human bladder cancer cell lines. Overexpression of miR-24 inhibited cell proliferation, invasion and epithelial to mesenchymal transition (EMT) of...
bladder cancer cells. Moreover, we found that CARMA3, a novel tumor suppressor gene, was the direct target of miR-24 in bladder cancer. Restoration of CARMA3 reversed the inhibitory effects of miR-24. Therefore, our outcomes showed critical roles for miR-24 in the pathogenesis of bladder cancer and suggested its possible application in tumor treatment.

Caspase recruitment domain and membrane-associated guanylate kinase–like domain protein (CARMA) family of proteins, a scaffold protein, contains CARMA1, CARMA2, and CARMA3 (CARD10) (25, 26). Recent studies reported that CARMA3 is required for nuclear factor kappa B (NF-κB) activation, and it also plays a critical role in tumor progression (27-30). Recently, the role of CARMA3 on carcinogenesis was involved in breast, renal, bladder, and colorectal cancers (31-34). A recent study confirmed that CARMA3 deficiency inhibited cancer cell proliferation in vitro and in vivo, and suppressed survival, migration and invasion in the human breast cancer cell lines MDA468 and A431 cells (35). CARMA3 knockdown induced significant suppression of SDF-1α-mediated invasion of oral squamous cell carcinoma TB2–T4 cells (36).

Materials and methods

Cell culture and miRNA transfection. Human bladder cancer cell lines T24, UMUC-3, J82, 5637 and one normal transitional epithelial cell line SV-HUC-1 cells were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in RPMI-1640 (Gibco Co., New York, NY, USA) containing 10% fetal bovine serum (FBS) (Gibco), 1% penicillin and streptomycin at 37°C in a humidified atmosphere of 5% on 0.1% gelatin-coated culture flasks. To upregulate the expression of miR-24 in T24 and UMUC-3 cells, both cells were transfected with miR-24 mimic, which served as the miR-24 group. T24 and UMUC-3 cells transfected with miR-negative control (miR-NC) were used as miR-NC group. One day before transfection, cells at ~40-60% confluency were changed to the antibiotic-free media. After 24 h, cells were transfected with 50 nM miR-24 mimic using Lipofectamine 2000 reagent (Invitrogen, USA) following the manufacturer’s protocol.

Reverse transcription polymerase chain reaction. Total RNA of T24 and UMUC-3 cells was extracted by using TRIzol reagent (Life Technologies, Carlsbad, CA, USA). Two microgram RNA was used for gene-specific reverse transcription polymerase chain reaction (RT-PCR) using one-step RT-PCR kit (Qiagen, Venlo, The Netherlands) following the manufacturer’s protocols. Denaturation was performed at 60°C for 1 min, annealing at 95°C for 1 min, and elongation at 95°C for 1 min for 40 cycles, followed by 60°C for 5 min. The following primers were used: CARMA3 forward, 5'-CCCCCTAAGATCCTTTCAGGAGATG-3'; reverse, 5'-CCACACCGCTGTCCAGAGGATG-3'. GAPDH forward, 5'-GAGTCACAGGAGATTTGGTCGATTAG-3'; reverse, 5'-CCTGGAAGATGGTGATGGGATCCTTCAGCAG-3'. GAPDH were used to normalize. Each sample was assessed in triplicate.

Cell Counting Kit-8 assay. The Cell Counting Kit-8 assay (CCK-8, Dojindo, Shanghai, China) was used to determine the viability of T24 and UMUC-3 cells. T24 and UMUC-3 cells (5x10^3 cells/well) were seeded in 96-well plates overnight. Then, cells were transfected with miR-24 mimic and miR-NC for 24 h. After that, cells were incubated in normal medium containing WST-8 substrate at 37°C for 2 h. Absorbance (450 nm) of the medium was detected using a spectrophotometer by assessing the cell viability.

Cell proliferation assay. To explore the effect of miR-24 transfection on proliferation of T24 and UMUC-3 cells, 5x10^3 cells were seeded in a 96-well plate and allowed to grow overnight in complete RPMI-1640 medium. The medium was then removed and the cells were transfected with miR-24 mimic and miR-NC for 24 h at 37°C. Cell Proliferation ELISA-Brdu (colorimetric) kit (Roche Diagnostics, USA) was used to detect cell proliferation following the manufacturer’s protocols.

Cell cycle analysis. The T24 and UMUC-3 cells were transfected with miR-24 mimic or miR-NC for 24 h. Then, T24 and UMUC-3 cells were collected by trypsinization, washed with ice-cold PBS, and fixed in ice-cold 70% methanol by incubating them for 1 h at 4°C. After that, cells were centrifuged, resuspended in ice-cold PBS, and incubated with RNase (Sigma) for 30 min at 37°C, and then were incubated with propidium iodide (PI; Sigma Chemical Co., USA) at room temperature for 30 min. The cell cycle was analyzed by FACScan flow cytometer (BD Biosciences, San Jose, CA, USA).

Annexin V-FITC/PI analysis. T24 and UMUC-3 cells were transfected with miR-24 mimic or miR-NC for 24 h. After transfection, cells were harvested and washed twice in PBS and double-stained with Annexin V-FITC and PI by using Annexin V-FITC Apoptosis Detection kit (Nanjing KeyGen Biotech Co., Nanjing, China) following the manufacturer’s protocols. Then, each sample was quantitatively analyzed at 488 and 570 nm excitation by FACS Calibur flow cytometer (BD), and then the fluorescence was analyzed using CellQuest software (Becton-Dickinson).

Transwell invasion assay. Transwell Matrigel invasion assay using Transwell chambers (8-mm pore size; Millipore, USA) precoated with Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) that contained extracellular matrix proteins was used to determined cell invasion. In brief, 1x10^5 cells in 100 µl DMEM containing 1% FBS were seeded in the upper chamber, and 600 ml DMEM containing 1% FBS was added to the lower chamber. After 24-h incubation at 37°C in a 5% CO₂ atmosphere, cells that remained in the upper chamber were removed by cotton swabs and penetrating cells were fixed in methanol, and then stained with 0.1% crystal violet. Cell invasion was quantified by counting cells on the lower surface using phase contrast microscopy.

Western blot analysis. To extract the proteins, T24 and UMUC-3 cells were washed twice in cold PBS, and then lysed in RIPA lysis buffer with protease inhibitor cocktail. The protein concentration of cell lysates was quantified by BCA kit (Beyotime Institute of Biotechnology Jiangsu, China), and 50 µg of each of proteins were separated by SDS-PAGE on 8% gels, and then transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore, USA). The membranes were blocked in
5% skimmed milk diluted with Tris-buffered saline Tween-20 (TBST) (in mmol/l: Tris-HCl 20, NaCl 150, pH 7.5, 0.1% Tween-20) at room temperature for 1 h and incubated overnight at 4°C with primary antibody respectively: anti-CARMA3, anti-cyclin D1, anti-CDK4, anti-CDK6, anti-Bcl-2, anti-phospho-Rb, anti-total-Rb, phospho-IκB-α (S32), total-IκB-α, anti-E-cadherin, anti-N-cadherin, anti-vimentin, anti-MMP9 (1:1,000; Cell Signaling Technology Inc., MA, USA); (1:500; Santa Cruz Biotechnology, CA, USA). The membranes were then incubated with a goat anti-rabbit or anti-mouse IgG conjugated to horseradish peroxidase secondary antibody (1:1,000; Santa Cruz Biotechnology) for 2 h. The proteins were visualized using ECL-plus reagents (Amersham Biosciences Corp., USA). The density of the bands was measured using the ImageJ software (USA), and values were normalized to the densitometric values of α-tubulin in each sample.

Luciferase reporter assay. T24 and UMUC-3 cells (1x10⁵/well) were seeded in 24-well plates and incubated for 24 h before transfection. Cells were cotransfected with 0.5 µg pGL3-CARMA3-3'-UTR wild-type or mutant reporter plasmid, 50 nM miR-24 mimic or miR-NC, and 20 ng pRL-SV40 Renilla plasmid (Promega, USA) using Lipofectamine 2000. At 24 h after transfection, both firefly and Renilla luciferase activities were quantified using a dual luciferase reporter system (Promega) according to the manufacturer’s instructions. All experiments were performed in triplicate.

Statistical analysis. All statistical analyses were performed using GraphPad Prism 5.0 (GraphPad Software, Inc., USA). Data from each group were expressed as mean ± standard error of the mean (SEM) and statistically analyzed by Student's t-test. Differences were considered statistically significant at a P-value of <0.05.

Results

MiR-24 expression is downregulated in bladder cancer cell lines. It has been reported that miR-24 was downregulated in osteosarcoma and gastric cancer (21,22), and was upregulated in breast cancer and hepatocellular carcinoma (23,24). However, the expression of miR-24 in bladder cancer is still unclear. Therefore, to examine the levels of miR-24 in bladder cancer cells, four bladder cancer cell lines (T24, UMUC-3, J82 and 5637) and a normal transitional epithelial cell line SV-HUC-1 were used to determine the expression of miR-24 by RT-PCR. It showed that miR-24 expression was markedly downregulated in all bladder cancer cell lines compared to that in normal transitional epithelial cell line SV-HUC-1, as shown in Fig. 1A. Furthermore, by using the online database, TargetScan 6.2, we found that CARMA3, which contributed to the malignant cell growth, was predicted to be a direct target of miR-24. Then, among these bladder cancer cell lines, we tested the expression levels of CARMA3 in T24 and UMUC-3 cells versus SV-HUC-1 cells. The results showed that the mRNA and protein levels of CARMA3 in T24 and UMUC-3 cells were significantly increased in contrast with SV-HUC-1 cells (Fig. 1B and C), which was consistent with a previous study (34).

Upregulation of miR-24 inhibits cell proliferation, induces G1-phase arrest and cell apoptosis in T24 and UMUC-3 cells.
Based on the downregulation of miR-24 and the upregulation of its predicted target gene CARMA3 in human bladder cancer cells, we believed that miR-24 could act as a suppressor of cell growth. After transfection with miR-24 mimic and miR-NC, the RT-PCR analysis showed that mRNA level of miR-24 was significantly upregulated in miR-24 mimic group compared to
miR-NC group (Fig. 2A). These data demonstrated that we efficiently enhanced miR-24 expression in T24 and UMUC-3 cells. To determine the role of miR-24 in viability of bladder cancer cells, the results from CCK-8 assay demonstrated that overexpression of miR-24 dramatically inhibited the growth of T24 and UMUC-3 cells (Fig. 2B). Besides, we also observed anti-proliferative effect in cells transfected with miR-24 mimic, as assessed by the BrdU-ELISA assay (Fig. 2C). These results indicated that upregulation of miR-24 had available anti-proliferative effect in both T24 and UMUC-3 cells.

Because miR-24 mimic significantly inhibited proliferation of T24 and UMUC-3 cells, we speculated that upregulation of miR-24 could induce cell cycle arrest in bladder cancer cells. We proved this tentatively by flow cytometry. Our finding showed that upregulation of miR-24 induced a dramatic G1-phase arrest and decreased the percentage of cells in the S-phase in both T24 and UMUC-3 cells compared with cells transfected with miR-NC (Fig. 2D). Therefore, overexpression of miR-24 might inhibit the proliferation of bladder cancer cells by impeding the G1/S cell cycle transition.

In order to explore whether pro-apoptosis participated in miR-24 mimic-induced anti-proliferative effect, the total apoptosis rates of T24 and UMUC-3 cells were detected by flow cytometry analysis. The results in Fig. 2E, show that the number of apoptotic T24 and UMUC-3 cells was evidently higher in miR-24 mimic than that in miR-NC group.

The effects of miR-24 overexpression on the expression of growth, cell cycle and apoptosis-related proteins in bladder cells. To investigate the possible mechanism of miR-24 on cell proliferation, cell cycle and apoptosis, we tested the effect of miR-24 mimic on several cell cycle and apoptosis-related molecules. As shown in Fig. 3, upregulation of miR-24 decreased the protein levels of cyclin D1, CDK4, CDK6 and Bcl-2 in T24 and UMUC-3 cells, which suggested that miR-24 inhibited cell proliferation, cell cycle and induced apoptosis by...
downregulation of cyclin D1, CDK4, CDK6, p-Rb and Bcl-2. In addition, miR-24 induced p-IκB expression, suggesting the association of miR-24 with NF-κB activity.

Upregulation of miR-24 inhibited the invasion and EMT in bladder cancer cells. To investigate whether upregulation of miR-24 possesses negative effects on invasion and EMT in bladder cancer cells, we further transfected miR-24 into T24 and UMUC-3 cells, and the invasive capacity of T24 and UMUC-3 cells was evaluated by Transwell invasion chamber experiments. The results from Transwell assays showed that the number of invading T24 and UMUC-3 cells was significantly lower in miR-24 mimic group compared to miR-NC group (Fig. 4A). These findings indicated that overexpression of miR-24 might inhibit T24 and UMUC-3 cell invasiveness. Furthermore, we examined the effect of miR-24 mimic on the expression of EMT markers in T24 and UMUC-3 cells using western blotting. Overexpression of miR-24 leads to upregulation of the epithelial marker E-cadherin, and downregulation of the mesenchymal marker N-cadherin, Vimentin and MMP9 at protein levels in T24 and UMUC-3 cells (Fig. 4B). Taken together, our results indicated that upregulation of miR-24 could inhibit the invasion and EMT in bladder cancer cells.

CARMA3 is a direct target of miR-24 in bladder cancer cells. Since CARMA3 was a binding target of miR-24 predicted by

![Figure 4](image-url)
we performed western blotting and RT-PCR to observe the expression of CARMA3 on protein and mRNA levels in T24 and UMUC-3 cells transfected with the miR-24 mimic. Our results showed that both levels were remarkably reduced after overexpression of miR-24 (Fig. 5A and B). To further demonstrate whether CARMA3 was a direct target of miR-24, CARMA3 3'-UTR was cloned into a luciferase reporter vector and the putative miR-24 binding site in the CARMA3 3'-UTR was mutated (Fig. 5C). The effect of miR-24 was determined using luciferase reporter assay. The results showed that overexpression of miR-24 significantly inhibited the luciferase activity of pGL3-CARMA3 3'-UTR WT (Fig. 5D). Mutation of the miR-24-binding site in the CARMA3 3'-UTR abolished the effect of miR-24, which suggested that CARMA3 was directly and negatively regulated by miR-24.

Suppression of CARMA3 is essential for miR-24-inhibited cell proliferation, invasion and EMT in bladder cancer cells. To determine whether miR-24 reduced the proliferation, invasion and EMT of bladder cancer cells in a CARMA3-dependent manner, we cotransfected T24 and UMUC-3 cells with miR-24 mimic and pcDNA3.1-CARMA3 vector (Fig. 6A). Analysis by Brdu-ELISA assay indicated that overexpression of CARMA3 in cells transfected with the miR-24 mimic enhanced the growth rate of bladder cancer cells (Fig. 6B). The Transwell assay showed that upregulating CARMA3 expression could reverse the inhibitory effect of the miR-24 mimic on invasion of bladder cancer cells (Fig. 6C). Moreover, increased CARMA3 expression downregulated the epithelial marker E-cadherin, and upregulated the mesenchymal marker N-cadherin, Vimentin and MMP9 at protein levels in T24 and UMUC-3 cells transfected with miR-24 mimic (Fig. 6D and E). Therefore, the inhibitory effects of miR-24 were reversed by CARMA3 overexpression. Our results clearly demonstrated that miR-24 inhibited cell proliferation, invasion and EMT in bladder cancer cells by downregulation of CARMA3, and that downregulation of CARMA3 was essential for the miR-24-inhibited cell proliferation, invasion and EMT in bladder cancer cells.

Discussion

The miRNAs have been reported as important regulators involved in different biological processes such as cell proliferation, metastasis, differentiation, transcriptional regulation and tumorigenesis (37). Globally miRNA dysregulation of tumors have provided major insights into the molecular mechanisms of neoplasia (38). As one of the most prominent miRNAs implicated in tumorigenesis, miR-24 has been presented with
a controversial role during tumor progression (39). miR-24 was found to be decreased in many human cancers, including gastric cancer and osteosarcoma (21,22), but increased in breast cancer and hepatocellular carcinoma (23,24). The precise role of miR-24 in bladder cancer remained unknown due to its tumor-suppressing or tumor-promoting function. Therefore, in

Figure 6. Overexpression of CARMA3 partially rescued miR-24-inhibited cell proliferation, invasion and EMT in BC cells. T24 and UMUC-3 cells were transfected with either miR-24 mimic with or without pCDNA-CARMA3 vector. (A) The protein expression of CARMA3 was determined by western blotting. α-tubulin was detected as a loading control. (B) Cell proliferation was assessed by BrdU-ELISA assay. (C) The invasion of T24 and UMUC-3 cells was assessed by Transwell assay. (D and E) The expressions of E-cadherin, N-cadherin and Vimentin were determined by western blotting in T24 and UMUC-3 cells, respectively. α-tubulin was detected as a loading control. All data are presented as mean ± SEM, n=6. *P<0.05, **P<0.01, ***P<0.001 vs. miR-24 mimic + pcDNA.
In this study, we aimed to elucidate the expression and biological functions of miR-24 in bladder cancer. Our results demonstrated that miR-24 was frequently downregulated in bladder cancer cell lines compared to normal transitional epithelial cell line. According to these findings, we speculated that miR-24 might be a potential anti-oncogene in bladder cancer. As expected, upregulation of miR-24 inhibited proliferation, invasion, EMT and induced apoptosis of T24 and UMUC-3 cells. Our current findings indicated that miR-24 played important roles in regulation of proliferation, apoptosis, invasion and metastasis in bladder cancer and may be a potential diagnostic and predictive biomarker.

We explored the exact molecular mechanism of miR-24 in suppressing proliferation, invasion, EMT and inducing apoptosis in bladder cancer cells. The results of the real-time PCR, western blotting and luciferase reporter assay demonstrated that CARMA3 is a direct target of miR-24. Importantly, we also showed that the proliferation-, invasion- and EMT-inhibiting effects of miR-24 overexpression were partly reversed by upregulating CARMA3 expression. Thus, we confirmed that miR-24 played critical roles in the inhibition of proliferation, invasion and metastasis in bladder cancer cells, partially by downregulating the protein expression of CARMA3.

In this study, CCK-8 and Brdu-ELISA assays showed that overexpression of miR-24 could significantly inhibit the proliferation of T24 and UMUC-3 cells. Cell cycle analyses also showed that the percentage of cells in the G1-phase was increased and the percentage of cells in the S-phase was decreased in cells transfected with miR-24 mimic compared to cells transfected with miR-NC. Moreover, flow cytometry analysis demonstrated that miR-24 mimic evidently induced apoptosis of T24 and UMUC-3 cells compared with miR-NC group. It is well known that cell cycle progression and apoptosis are regulated by numerous proteins. To confirm the possible mechanism of miR-24 on regulation of cell cycle and apoptosis, we investigated the effects of miR-24 mimic on cell cycle- and apoptosis-related proteins. We detected the expressions of cyclin D1, CDK4, CDK6, p-Rb and Bcl-2. From our data, we found that upregulation of miR-24 decreased the protein levels of cyclin D1, CDK4, CDK6, p-Rb and Bcl-2. Cyclin D1 interacts with CDK4/6 to form the cyclin-D-CDK4/6 complex, and then phosphorylates Rb, which plays a critical role in carcinogenesis. The cyclin-D1/CDK4, 6/p-Rb pathway has been proved to be changed in most of human cancers (40,41). It is a pivotal regulator of the GI to S phase transition of the cell cycle. Bcl-2, an anti-apoptotic protein, is considered to be resistant to conventional treatment of cancer (42,43). In this report, our finding showed that miR-24 mimic reduced Bcl-2 protein, which indicated that miR-24 regulated cell apoptosis via Bcl-2 modulation. Altogether, these outcomes indicated that miR-24 affected the cell cycle and apoptosis by regulating cyclin D1, CDK4, CDK6, p-Rb and Bcl-2. In addition, Transwell assay showed that miR-24 mimic dramatically inhibited the invasion of T24 and UMUC-3 cells compared with miR-NC group. Furthermore, we determined the change of EMT markers in T24 and UMUC-3 cells transfected with miR-24 mimic. Our results showed that upregulation of miR-24 d markedly suppressed the invasive ability of BC cells by dramatically upregulating the epithelial marker E-cadherin and downregulating the mesenchymal markers N-cadherin, Vimentin and MMP9, which supported that miR-24 might suppress the EMT process to restrain cell invasion and metastasis.

CARMA3 is also known as an oncogene and its upregulation has been identified in many cancers. It has been reported that downregulation of CARMA3 decreases cell proliferation and invasion in non-small cell lung cancer cell and pancreatic cancer cells (44,45), and inhibits cell proliferation and induces apoptosis in bladder cancer cells (34). Moreover, it has become increasingly clear that CARMA3 plays a critical role in activation of NF-κB in development and progression of tumors (32,33,44,45). Previous studies showed that NF-κB is an object of most pharmaceutical research studies as a target for anti-tumor treatment. Because it has been reported that cyclin D1, Bcl-2, EMT markers such as MMP9 are downstream target genes of NF-κB, blocking NF-κB activation could inhibit cancer cell proliferation, invasion, metastasis and induce apoptosis. In this study, our results demonstrated that CARMA3 is a target of miR-24. When the CARMA3 expression was reduced by overexpressing miR-24, the p-IκB expression was induced, showing a link between CARMA3 and NF-κB activation. Taken together, miR-24 was able to inhibit proliferation, invasion, metastasis and induce apoptosis in bladder cancer potentially by downregulation of the CARMA3/NF-κB pathway.

In conclusion, our results show that miR-24 was dramatically downregulated in bladder cancer cells. Overexpression of miR-24 inhibited proliferation, invasion, EMT and induced apoptosis of bladder cancer cells through directly targeting CARMA3. This novel miR-24/CARMA3 axis might provide new insights into the molecular mechanisms underlying progression and metastasis of tumors, and upregulation of miR-24 expression might be a possible therapeutic strategy for the therapy of bladder cancer in the future.

Acknowledgements

This study was supported by Key Municipal Scientific Project of Haikou (grant no. 2012-073), Hainan Provincial Natural Science Foundation (grant no. 813256), Key Scientific Project of Hainan Province (grant no. ZDXM2014076), National Nature Science Foundation of China (grant no. 81460450) and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

20. Zhang DQ, Zhou CK, Jiang XW, Chen J and Shi BK: Increased
1360