Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth

LI LI1,2, LIHUI WEI2,3, ALING SHEN2,3, JIANFENG CHU2,3, JIUMAO LIN2,3 and JUN PENG2,3

1Department of Disease Prevention and Healthcare, Fujian Provincial Hospital, Fuzhou, Fujian 350001; 2Academy of Integrative Medicine and 3Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China

Received July 21, 2015; Accepted September 23, 2015

DOI: 10.3892/ijo.2015.3198

Abstract. Due to drug resistance and unacceptable cytotoxicity of most currently-used cancer chemotherapies, naturally occurring products have gained attention in the field of anticancer treatment. Oleanolic acid (OA) is a natural pentacyclic triterpenoic acid and a principal active compound in many medicinal herbs that have long been used to clinically treat various types of human malignancies. Using a colorectal cancer (CRC) mouse xenograft model and the cell line HT-29, we evaluated the effect of OA on tumor growth in vivo and in vitro, and investigated the underlying molecular mechanisms in the present study. We found that OA significantly inhibited tumor growth in volume and weight in CRC xenograft mice. In addition, OA treatment led to the induction of apoptosis and inhibition of cell proliferation. OA significantly reduced the expression of Bcl-2, Cyclin D1 and CKD4, whereas Bax and p21 expression was profoundly increased after OA treatment. Furthermore, OA significantly suppressed the activation of Akt, p70S6K and MAPK signalings, but promoted p53 pathway activation. Collectively, findings from this study suggest that OA possesses a broad range of anticancer effects via modulation of multiple intracellular targets.

Introduction

Colorectal carcinoma (CRC) is a major global health concern, with over one million new cases and more than half a million deaths annually (1,2). The pathogenic mechanisms mediating CRC development are complicated, with involvement of multiple intracellular signaling transduction cascades including mitogen-activated protein kinase (MAPK), serine-threonine kinase Akt, p70S6 kinase (p70S6K) and p53 pathways (3-11). Aberrant activation of these pathways modulates the expression of many key genes, resulting in the imbalance between cell proliferation and apoptosis, and eventually the induction and progression of cancer. Moreover, these pathways usually function redundantly and form a complicated compensatory network via cross-talk. Thus, most currently-used antitumor agents that are designed for single target might not be always effective and their long-term use might generate drug resistance (12-14).

Naturally-occurring products, including traditional Chinese medicines (TCM), have gained increasing attention in the field of anticancer treatment since they contain relatively few side effects as compared to modern chemotherapeutics (15-17). Oleanolic acid (OA), a natural pentacyclic triterpenic acid, is an active compound present in many well-known TCM medicinal herbs, such as Hedyotic diffusa, Patrinia scabiosaefolia and Scutellaria barbata. These herbs have long been used in China to clinically treat various types of human malignancies including CRC (18-26). Previous reports suggest OA may contain anti-inflammatory, antioxidant, and antitumor activities (27-29). However, the precise mechanisms of tumorcidal activity of OA remain largely unclear. Using a CRC mouse xenograft model and the cell line HT-29, we evaluated the effect of OA on tumor growth in vivo and in vitro, and investigated the underlying molecular mechanisms.

Materials and methods

Cell culture. Human colon carcinoma HT-29 cells were obtained from the Cell Bank of Chinese Academy of Sciences (Shanghai, China) and grown in DMEM supplemented with 10% (v/v) FBS, 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen, Carlsbad, CA, USA). Cells were cultured at 37˚C, in 5% CO2 humidified incubator.

Oleanolic acid preparation. Oleanolic acid (OA, ≥90%) was purchased from Sigma-Aldrich (St. Louis, MO, USA). For cell-based experiments, stock solution of OA was prepared by
Precipitate was dissolved in 100 µl DMSO. The cell viability was measured at 570 nm with a Model ELX800 Microplate Reader (BioTek, VT, USA).

Cell cycle analysis. HT-29 cells were seeded into 6-well plates at a density of 2x10^5 cells/well and treated with various concentrations of OA for 24 h. The cells were harvested, resuspended in medium and re-seeded into 6-well plates at a density of 1.0x10^4 cells/well. After incubation for 10 days in a 37°C humidified incubator with 5% CO2, colonies were counted by light microscopy.

Nude mouse xenograft study. Six-week-old male BALB/c athymic (nude) mice (20-22 g) were obtained from Shanghai SLAC Laboratory Animal Co., Ltd. (Shanghai, China) and housed in the specific pathogen-free controlled conditions (22°C, a 12-h light/dark cycle). Food and water were given ad libitum. HT-29 CRC xenograft mice were produced as previously described (19). Briefly, 2.5x10^6 of HT-29 cells were subcutaneously injected into the right flank of mice to initiate tumor growth. At day 3, following xenograft implantation, mice were randomly divided into two groups (n=10) and intraperitoneally injected with 12.5 mg/kg of OA or saline, daily, 6 days per week for 16 days. Tumor volume was measured and calculated by the formulation of \(V = \frac{\pi}{6} \times L \times W^2 \), where ‘L’ and ‘W’ refer to length and width, respectively. All animal experiments were approved by the Institutional Animal Care and Use Committee of Fujian University of Traditional Chinese Medicine.

Immunohistochemical analysis. Tumor tissues were analyzed by immunohistochemistry staining as described before (19). Briefly, 8 tumors were randomly selected from OA-treatment or control groups. Tumor tissues were fixed in 10% formaldehyde for 12 h, paraffin-embedded, sectioned and placed on slides. The slides were subjected to antigen retrieval and endogenous peroxidase activity was quenched with hydrogen peroxide. Non-specific binding was blocked with normal serum in PBS (0.1% Tween-20). Rabbit polyclonal antibody against PCNA (Santa Cruz Biotechnology, CA, USA) was used to detect the relevant proteins. The binding of the primary antibody was demonstrated with a biotinylated secondary antibody, horse-radish peroxidase (HRP)-conjugated streptavidin (Dako) and dianinobenzidine (DAB) as the chromogen. The tissues were counterstained with diluted Harris hematoxylin. After staining, five high-power fields (at magnification of x400) were randomly selected in each slide and the average proportion of positive cells in each field was counted.

Apoptosis analysis in cells with Annexin V/PI staining. HT-29 cells were seeded into 6-well plates at a density of 2x10^5 cells/well and treated with various concentrations of OA for 24 h. The cells were harvested, resuspended and stained with Annexin V/PI (Becton-Dickinson, CA, USA) according to the manufacturer's instructions followed by flow cytometry analysis. The percentage of cells in early apoptosis was calculated by Annexin V-positivity and PI-negativity and the percentage of cells in late apoptosis was calculated by Annexin V-positivity and PI-positivity.

Western blot analysis. The protein expression was detected by western blot analysis. Protein of tumor tissues or HT-29 cells was extracted using RIPA protein extraction kit (Tiangen Biotech, Beijing, China), respectively. The protein were separated by SDS-PAGE and transferred onto PVDF membranes. The membranes were blocked for 1 h with 5% non-fat milk and incubated with primary antibody against Cyclin D1, CDK4, p21, Bcl-2, Bax or β-actin (all in 1:1,000 dilutions; Cell Signaling Technology, Beverly, MA, USA) overnight at 4°C. The HRP-conjugated secondary antibodies (1:2,000 dilution) were added. Then the levels of protein expression were detected with enhanced chemiluminescence detection.
After lysis of treated cells or tumor tissues the expression of pAkt, pErk1/2, pJNK, pp38, pp70S6K and pp53 was examined using the Bio-Plex 200 suspension array system Bio-Plex Phosphoprotein assay (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s protocol.

Statistical analysis. The data were analyzed using SPSS for Windows (Version 17.0) and shown as average with SD. Statistical analysis was performed with Student’s t-test or ANOVA.

Results and Discussion

OA inhibited CRC growth in vivo and in vitro. Tumor growth in vivo was evaluated by measuring the tumor volume and tumor weight in CRC xenograft mice. As shown in Fig. 1A, administration with OA significantly decreased both tumor volume and tumor weight. At the end of experiment, the tumor volume and tumor weight per mouse in control group were 1.36±0.32 cm³ and 0.94±0.14 g, whereas those in OA-treated group were 0.79±0.14 cm³ and 0.51±0.08 g (P<0.05). The in vitro effect of OA on CRC growth was determined by MTT assay to compare the relative viability of HT-29 cells in OA-treated monolayers and untreated controls. As shown in Fig. 1B, treatment with 25-150 µM of OA for 24 h reduced HT-29 cell viability by 16-78% compared to untreated control cells; and 50 µM of OA gradually decreased cell viability with the increase of exposure time (P<0.05). Taken together, it is suggested that OA possesses inhibitory effects on CRC growth both in vivo and in vitro, in a dose- and time-dependent manner.

OA inhibited CRC cell proliferation through blockage of cell cycle G1 to S progression. Cancers are typically characterized by an uncontrolled increase of cell proliferation (30); which therefore is a critical target of anticancer treatment. To determine the in vivo effect of OA on cancer cell proliferation, we performed immunohistochemical staining (IHS) to evaluate the expression level of a proliferation marker PCNA in CRC tumor tissues. As shown in Fig. 2A, OA treatment significantly decreased the protein expression of PCNA in CRC xenograft mice. The percentage of PCNA-positive cells in tumors from control and OA-treated CRC mice was 30.64±5.18 and 14.75±5.17%, respectively (P<0.05). The effect of OA on CRC cell proliferation in vitro was assessed by colony formation assay. As shown in Fig. 2B, OA significantly and dose-dependently decreased the survival rate of HT-29 cells (P<0.05). Eukaryotic cell proliferation is tightly regulated by the cell cycle, and G1/S transition is a main checkpoint critical for the control of the cell cycle progress. To
investigate the mechanism of anti-proliferative effect of OA, we performed FACS analysis with PI staining to evaluate cell cycle. As shown in Fig. 2C, OA treatment significantly and dose-dependently reduced the S-phase proportion of HT-29 cells. Collectively, OA can inhibit CRC cell proliferation via G1/S cell cycle arrest.

OA promoted CRC cell apoptosis via the mitochondrion-dependent pathway. Apoptosis eliminates abnormal cells and hence is essential for tissue homeostasis. Dysregulation of apoptosis represents a major causative factor of tumorigenesis (31). Therefore, promoting cell apoptosis has been a major focus for antitumor therapies. The *in vivo* apoptosis was evaluated by TUNEL assay. As shown in Fig. 3A, treatment with OA significantly enhanced the percentage of TUNEL-positive cells in tumors from CRC mice. HT-29 cell apoptosis *in vitro* was examined using Annexin V/PI staining followed by FACS analysis. As shown in Fig. 3B, OA treatment increased the percentage of cells undergoing apoptosis in a dose-dependent manner.

The mitochondrion-dependent pathway is the most common apoptotic pathway in vertebrate animal cells. Mitochondrial outer membrane permeabilization (MOMP) results in the release of numerous apoptogenic proteins and eventually induces apoptosis, which thereby is a key commitment step in the induction of cellular apoptosis. During the process of MOMP the electrochemical gradient across the mitochondrial membrane collapses. Therefore, the loss of mitochondrial membrane potential is a hallmark for apoptosis. Since the membrane-permeant JC-1 dye displays potential-dependent accumulation in mitochondria, indicated by a fluorescence emission shift from green (525 nm) to red (590 nm), collapse of mitochondrial potential during apoptosis can be represented by a decrease in the ratio of red/green fluorescence intensity of JC-1. As shown in Fig. 3C, OA treatment significantly and dose-dependently reduced JC-1 red/green fluorescent ratio or mitochondrial membrane potential in HT-29 cells (P<0.05). These data together suggest that OA induces CRC cell apoptosis *in vivo* and *in vitro* via the mitochondrion-dependent pathway.

OA regulates the expression of Cyclin D1, CDK4, p21, Bcl-2 and Bax. G1/S progression is highly mediated by Cyclin D1 and its catalytic partner CDK4 (32,33). An unchecked or hyperactivated Cyclin D1/CDK4 complex often leads to uncontrolled increase in cell proliferation (34,35). As a proliferation inhibitor, p21 protein plays a role in G1 arrest by binding to and inhibiting the activity of Cyclin-CDK complexes (36). Bcl-2 family proteins are critical mediators of mitochondrion-dependent apoptosis, functioning as either promoters (e.g., Bax) or inhibitors (e.g., Bcl-2) (37). The ratio of Bcl-2 to Bax is critical for determining the fate of cells.
Figure 3. OA promotes CRC cell apoptosis via the mitochondrion-dependent pathway. (A) Apoptosis in tumor tissues was determined by TUNEL. Images are representative taken at a magnification of x400. Quantification of TUNEL assay is presented as percentage of positively-stained cells and shown as the averages with SD from 8 mice in OA-treated or control group. (B) HT-29 cell apoptosis was analyzed by FACS with Annexin V/PI staining. Images are representative of FACS scatter-grams, where Annexin V-positive/PI-negative stained cells (LR, lower right) and Annexin V/PI double-positive stained cells (UR, upper right) represent early apoptosis and late apoptosis, respectively. Quantitative data are shown as the averages with SD from three independent experiments. *P<0.05, versus control cells. (C) Mitochondrial membrane potential in HT-29 cells was examined by FACS analysis with JC-1 staining. Images are representative of FACS scatter-grams. Quantitation was calculated as the ratio of red/green fluorescence intensity of JC-1. Data are shown as the averages with SD from three independent experiments. *P<0.05, versus control cells.
Higher Bcl-2/Bax ratio is commonly found in various types of cancer, conferring a survival advantage to cancer cells (38-40).

To explore the mechanisms whereby OA exerts its anti-proliferative and pro-apoptotic activities, we performed western blot analysis to determine the protein expression of the above-mentioned factors. As shown in Fig. 4, OA significantly reduced the protein level of pro-proliferative Cyclin D1 and p21 as well as anti-apoptotic Bcl-2 in both CRC tumors and HT-29 cells, whereas that of anti-proliferative p21 and pro-apoptotic Bax was significantly increased after OA treatment. Taken together, these data demonstrate that OA exerts its antitumor activities through modulating the expression of critical genes involved in cell proliferation and apoptosis.

OA modulates the activation of multiple CRC-related signaling pathways. The development of malignant tumors including CRC is strongly associated with multiple intracellular signal transduction cascades such as MAPK, Akt, p70S6K and p53 pathways (3-11). After activation by PI3K, Akt phosphorylates mTOR which in turns regulates p70S6K phosphorylation and activation. The Akt-mTOR-p70S6K signaling pathway is considered as a central regulatory pathway of protein expression involved in regulating cell proliferation and survival. Mammals have three major subfamilies of MAPK, including ERK, JNK and p38. The MAPK signaling proceeds via a three-tiered kinase core consisting of MAPK kinase kinase, MAPK kinase, and ultimately a given MAPK. Signaling of both Akt and MAPK are major cell-survival and prolifera-
tion pathways and have been shown to be activated in several cancers including CRC. In addition, Akt and MAPK pathways can influence the tumor suppressor p53, a transcription factor involved in many cellular processes such as DNA repair, cell cycle arrest and apoptosis. p53 is one of the most frequently mutated genes in human cancers. To further elucidate the mechanisms of antitumor activity of OA, we used Bio-Plex Phospho-protein assay to examine the activation/phosphorylation of multiple proteins in CRC xenograft tumor tissues and HT-29 cells. As shown in Fig. 5, OA treatment significantly reduced the phosphorylation levels of Akt, ERK, JNK, p38 and p70S6K both in vivo and in vitro, while p53 phosphorylation was remarkably increased after OA treatment, suggesting that OA profoundly modulates the activation of multiple CRC-related signaling pathways in vivo and in vitro.

In conclusion, OA exerts its antitumor effects via modulation of multiple cellular targets. Results from this study may provide a strong scientific foundation for the development of novel multi-targeted anticancer agents from the bioactive ingredients in medicinal herbs.

Acknowledgements

This study was sponsored by the Research Fund for the Doctoral Program of Higher Education of China (20133519110003), the Natural Science Foundation of Fujian Province (2015J01337), and the Developmental Fund of Chen Keji Integrative Medicine (CKJ2014013 and CKJ2015007).

References

