Overexpression of TMOD1 is associated with enhanced regional lymph node metastasis in human oral cancer

  • Authors:
    • Toshikazu Suzuki
    • Atsushi Kasamatsu
    • Isao Miyamoto
    • Tomoaki Saito
    • Morihiro Higo
    • Yosuke Endo-Sakamoto
    • Masashi Shiiba
    • Hideki Tanzawa
    • Katsuhiro Uzawa
  • View Affiliations

  • Published online on: December 22, 2015     https://doi.org/10.3892/ijo.2015.3305
  • Pages: 607-612
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Tropomodulin1 (TMOD1), which regulates the length and depolymerization of actin filaments by binding to the pointed end of the actin filament, has been reported to be a powerful diagnostic marker for ALK-negative anaplastic large-cell lymphoma; however, little is known about the relevance of TMOD1 in the behavior of oral squamous cell carcinoma (OSCC). We evaluated TMOD1 expression in OSCC-derived cell lines and primary OSCC samples (n=200) using quantitative reverse transcriptase-polymerase chain reaction, immunoblotting and semi-quantitative immunohistochemistry. We also analyzed the clinical correlation between TMOD1 expression status and clinical parameters in patients with OSCC and performed a prospective study using 40 primary OSCC samples. TMOD1 expression was upregulated significantly (p<0.05) in OSCC in vitro and in vivo compared with normal counterparts. TMOD1 expression also was correlated significantly (p=0.0199 and p=0.0064, respectively) with regional lymph node metastasis (RLNM) and 5-year survival rates. This prospective study also showed that high TMOD1 expression was seen in 12 (75%) of 16 cases in RLNM-positive patients and 9 (37.5%) of 24 cases in RLNM-negative patients. The current data provide the first evidence that TMOD1 expression is a critical biomarker for RLNM and prognosis of patients with OSCC.

References

1 

Severino P, Alvares AM, Michaluart P Jr, Okamoto OK, Nunes FD, Moreira-Filho CA and Tajara EH; Head and Neck Genome Project GENCAPO. Global gene expression profiling of oral cavity cancers suggests molecular heterogeneity within anatomic subsites. BMC Res Notes. 1:1132008. View Article : Google Scholar : PubMed/NCBI

2 

Yao M, Epstein JB, Modi BJ, Pytynia KB, Mundt AJ and Feldman LE: Current surgical treatment of squamous cell carcinoma of the head and neck. Oral Oncol. 43:213–223. 2007. View Article : Google Scholar

3 

Casiglia J and Woo SB: A comprehensive review of oral cancer. Gen Dent. 49:72–82. 2001.

4 

Takes RP: Staging of the neck in patients with head and neck squamous cell cancer: Imaging techniques and biomarkers. Oral Oncol. 40:656–667. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Karatzanis AD, Waldfahrer F, Psychogios G, Hornung J, Zenk J, Velegrakis GA and Iro H: Resection margins and other prognostic factors regarding surgically treated glottic carcinomas. J Surg Oncol. 101:131–136. 2010.

6 

Fan S, Tang QL, Lin YJ, Chen WL, Li JS, Huang ZQ, Yang ZH, Wang YY, Zhang DM, Wang HJ, et al: A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma. Int J Oral Sci. 3:180–191. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Lea J, Bachar G, Sawka AM, Lakra DC, Gilbert RW, Irish JC, Brown DH, Gullane PJ and Goldstein DP: Metastases to level IIb in squamous cell carcinoma of the oral cavity: A systematic review and meta-analysis. Head Neck. 32:184–190. 2010.

8 

Okura M, Aikawa T, Sawai NY, Iida S and Kogo M: Decision analysis and treatment threshold in a management for the N0 neck of the oral cavity carcinoma. Oral Oncol. 45:908–911. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Greenberg JS, Fowler R, Gomez J, Mo V, Roberts D, El Naggar AK and Myers JN: Extent of extracapsular spread: A critical prognosticator in oral tongue cancer. Cancer. 97:1464–1470. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Sano D and Myers JN: Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 26:645–662. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Tanaka J, Irié T, Yamamoto G, Yasuhara R, Isobe T, Hokazono C, Tachikawa T, Kohno Y and Mishima K: ANGPTL4 regulates the metastatic potential of oral squamous cell carcinoma. J Oral Pathol Med. 44:126–133. 2015. View Article : Google Scholar

12 

Lewis RA, Yamashiro S, Gokhin DS and Fowler VM: Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3. Cytoskeleton Hoboken. 71:395–411. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Bliss KT, Tsukada T, Novak SM, Dorovkov MV, Shah SP, Nworu C, Kostyukova AS and Gregorio CC: Phosphorylation of tropomodulin1 contributes to the regulation of actin filament architecture in cardiac muscle. FASEB J. 28:3987–3995. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Krieger I, Kostyukova A, Yamashita A, Nitanai Y and Maéda Y: Crystal structure of the C-terminal half of tropomodulin and structural basis of actin filament pointed-end capping. Biophys J. 83:2716–2725. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Kostyukova A, Maeda K, Yamauchi E, Krieger I and Maéda Y: Domain structure of tropomodulin: Distinct properties of the N-terminal and C-terminal halves. Eur J Biochem. 267:6470–6475. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Kostyukova AS: Tropomodulins and tropomodulin/tropomyosin interactions. Cell Mol Life Sci. 65:563–569. 2008. View Article : Google Scholar

17 

Gregorio CC, Weber A, Bondad M, Pennise CR and Fowler VM: Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature. 377:83–86. 1995. View Article : Google Scholar : PubMed/NCBI

18 

Tsukada T, Kotlyanskaya L, Huynh R, Desai B, Novak SM, Kajava AV, Gregorio CC and Kostyukova AS: Identification of residues within tropomodulin-1 responsible for its localization at the pointed ends of the actin filaments in cardiac myocytes. J Biol Chem. 286:2194–2204. 2011. View Article : Google Scholar :

19 

Fowler VM, Greenfield NJ and Moyer J: Tropomodulin contains two actin filament pointed end-capping domains. J Biol Chem. 278:40000–40009. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Greenfield NJ, Kostyukova AS and Hitchcock-DeGregori SE: Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys J. 88:372–383. 2005. View Article : Google Scholar

21 

Kostyukova AS, Choy A and Rapp BA: Tropomodulin binds two tropomyosins: A novel model for actin filament capping. Biochemistry. 45:12068–12075. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Kostyukova AS, Rapp BA, Choy A, Greenfield NJ and Hitchcock-DeGregori SE: Structural requirements of tropomodulin for tropomyosin binding and actin filament capping. Biochemistry. 44:4905–4910. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Ito-Kureha T, Koshikawa N, Yamamoto M, Semba K, Yamaguchi N, Yamamoto T, Seiki M and Inoue J: Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth. Cancer Res. 75:62–72. 2015. View Article : Google Scholar

24 

Agnelli L, Mereu E, Pellegrino E, Limongi T, Kwee I, Bergaggio E, Ponzoni M, Zamò A, Iqbal J, Piccaluga PP, et al; European T-Cell Lymphoma Study Group. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 120:1274–1281. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Kasamatsu A, Uzawa K, Nakashima D, Koike H, Shiiba M, Bukawa H, Yokoe H and Tanzawa H: Galectin-9 as a regulator of cellular adhesion in human oral squamous cell carcinoma cell lines. Int J Mol Med. 16:269–273. 2005.PubMed/NCBI

26 

Endo Y, Uzawa K, Mochida Y, Shiiba M, Bukawa H, Yokoe H and Tanzawa H: Sarcoendoplasmic reticulum Ca2+ ATPase type 2 downregulated in human oral squamous cell carcinoma. Int J Cancer. 110:225–231. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Sakuma K, Kasamatsu A, Yamatoji M, Yamano Y, Fushimi K, Iyoda M, Ogoshi K, Shinozuka K, Ogawara K, Shiiba M, et al: Expression status of Zic family member 2 as a prognostic marker for oral squamous cell carcinoma. J Cancer Res Clin Oncol. 136:553–559. 2010. View Article : Google Scholar

28 

Yamatoji M, Kasamatsu A, Kouzu Y, Koike H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H and Uzawa K: Dermatopontin: A potential predictor for metastasis of human oral cancer. Int J Cancer. 130:2903–2911. 2012. View Article : Google Scholar

29 

Pindborg J, Reichart P, Smith C and Van der Waal I: Histological Typing of Cancer and Precancer of the Oral Mucosa. 2nd edition. Springer-Verlag; Berlin: 1997, View Article : Google Scholar

30 

Sobin LH, Gospodarowicz MK and Wittekind C: TNM Classification of Malignant Tumours. 7th edition. John Wiley & Sons; 2011

31 

Shimizu F, Shiiba M, Ogawara K, Kimura R, Minakawa Y, Baba T, Yokota S, Nakashima D, Higo M, Kasamatsu A, et al: Overexpression of LIM and SH3 protein 1 leading to accelerated G2/M phase transition contributes to enhanced tumourigenesis in oral cancer. PLoS One. 8:e831872013. View Article : Google Scholar

32 

Iyoda M, Kasamatsu A, Ishigami T, Nakashima D, Endo-Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H and Uzawa K: Epithelial cell transforming sequence 2 in human oral cancer. PLoS One. 5:e140822010. View Article : Google Scholar : PubMed/NCBI

33 

Baba T, Sakamoto Y, Kasamatsu A, Minakawa Y, Yokota S, Higo M, Yokoe H, Ogawara K, Shiiba M, Tanzawa H, et al: Persephin: A potential key component in human oral cancer progression through the RET receptor tyrosine kinase-mitogen-activated protein kinase signaling pathway. Mol Carcinog. 54:608–617. 2013. View Article : Google Scholar

34 

Minakawa Y, Kasamatsu A, Koike H, Higo M, Nakashima D, Kouzu Y, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, et al: Kinesin family member 4A: A potential predictor for progression of human oral cancer. PLoS One. 8:e859512013. View Article : Google Scholar

35 

Lombardi DP, Geradts J, Foley JF, Chiao C, Lamb PW and Barrett JC: Loss of KAI1 expression in the progression of colorectal cancer. Cancer Res. 59:5724–5731. 1999.PubMed/NCBI

36 

Shimada K, Uzawa K, Kato M, Endo Y, Shiiba M, Bukawa H, Yokoe H, Seki N and Tanzawa H: Aberrant expression of RAB1A in human tongue cancer. Br J Cancer. 92:1915–1921. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, Endo Y, Kasamatsu A, Shiiba M, Bukawa H, et al: Overexpression of stathmin in oral squamous-cell carcinoma: Correlation with tumour progression and poor prognosis. Br J Cancer. 94:717–723. 2006.PubMed/NCBI

38 

Maula S-M, Luukkaa M, Grénman R, Jackson D, Jalkanen S and Ristamäki R: Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res. 63:1920–1926. 2003.PubMed/NCBI

39 

Kim SY, Nam SY, Choi SH, Cho KJ and Roh JL: Prognostic value of lymph node density in node-positive patients with oral squamous cell carcinoma. Ann Surg Oncol. 18:2310–2317. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Nicolson GL: Paracrine and autocrine growth mechanisms in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis. Cancer Metastasis Rev. 12:325–343. 1993. View Article : Google Scholar : PubMed/NCBI

41 

Thomas GJ, Lewis MP, Hart IR, Marshall JF and Speight PM: AlphaVbeta6 integrin promotes invasion of squamous carcinoma cells through up-regulation of matrix metalloproteinase-9. Int J Cancer. 92:641–650. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Ylipalosaari M, Thomas GJ, Nystrom M, Salhimi S, Marshall JF, Huotari V, Tervahartiala T, Sorsa T and Salo T: αvβ6 integrin down-regulates the MMP-13 expression in oral squamous cell carcinoma cells. Exp Cell Res. 309:273–283. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Ramos DM, But M, Regezi J, Schmidt BL, Atakilit A, Dang D, Ellis D, Jordan R and Li X: Expression of integrin β6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol. 21:297–307. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Su C, Chen Z, Luo H, Su Y, Liu W, Cai L, Wang T, Lei Y and Zhong B: Different patterns of NF-kappaB and Notch1 signaling contribute to tumor-induced lymphangiogenesis of esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 30:852011. View Article : Google Scholar

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Suzuki, T., Kasamatsu, A., Miyamoto, I., Saito, T., Higo, M., Endo-Sakamoto, Y. ... Uzawa, K. (2016). Overexpression of TMOD1 is associated with enhanced regional lymph node metastasis in human oral cancer. International Journal of Oncology, 48, 607-612. https://doi.org/10.3892/ijo.2015.3305
MLA
Suzuki, T., Kasamatsu, A., Miyamoto, I., Saito, T., Higo, M., Endo-Sakamoto, Y., Shiiba, M., Tanzawa, H., Uzawa, K."Overexpression of TMOD1 is associated with enhanced regional lymph node metastasis in human oral cancer". International Journal of Oncology 48.2 (2016): 607-612.
Chicago
Suzuki, T., Kasamatsu, A., Miyamoto, I., Saito, T., Higo, M., Endo-Sakamoto, Y., Shiiba, M., Tanzawa, H., Uzawa, K."Overexpression of TMOD1 is associated with enhanced regional lymph node metastasis in human oral cancer". International Journal of Oncology 48, no. 2 (2016): 607-612. https://doi.org/10.3892/ijo.2015.3305