Open Access

Role of ribosomal protein mutations in tumor development (Review)

  • Authors:
    • Kaveh M. Goudarzi
    • Mikael S. Lindström
  • View Affiliations

  • Published online on: February 9, 2016     https://doi.org/10.3892/ijo.2016.3387
  • Pages: 1313-1324
  • Copyright: © Goudarzi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.

References

1 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, et al: The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 21:169–175. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP and Lipton JM: Incidence of neoplasia in Diamond Blackfan anemia: A report from the Diamond Blackfan Anemia Registry. Blood. 119:3815–3819. 2012. View Article : Google Scholar : PubMed/NCBI

4 

De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E, Porcu M, et al: Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 45:186–190. 2013. View Article : Google Scholar

5 

Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES and Getz G: Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Nieminen TT, O'Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD, Ellonen P, Abdel-Rahman WM, Valo S, Mecklin JP, et al: Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 147:595–598.e5. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Novetsky AP, Zighelboim I, Thompson DM Jr, Powell MA, Mutch DG and Goodfellow PJ: Frequent mutations in the RPL22 gene and its clinical and functional implications. Gynecol Oncol. 128:470–474. 2013. View Article : Google Scholar

8 

Sharma S and Lafontaine DL: ‘View From A Bridge’: A new perspective on eukaryotic rRNA base modification. Trends Biochem Sci. 40:560–575. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Boisvert FM, van Koningsbruggen S, Navascués J and Lamond AI: The multifunctional nucleolus. Nat Rev Mol Cell Biol. 8:574–585. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Ferreira-Cerca S, Pöll G, Gleizes PE, Tschochner H and Milkereit P: Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell. 20:263–275. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Ferreira-Cerca S, Pöll G, Kühn H, Neueder A, Jakob S, Tschochner H and Milkereit P: Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell. 28:446–457. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ and Bessler M: The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA. 14:1918–1929. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T and Page DC: A map of 75 human ribosomal protein genes. Genome Res. 8:509–523. 1998.PubMed/NCBI

14 

Ban N, Beckmann R, Cate JH, Dinman JD, Dragon F, Ellis SR, Lafontaine DL, Lindahl L, Liljas A, Lipton JM, et al: A new system for naming ribosomal proteins. Curr Opin Struct Biol. 24:165–169. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Slavov N, Semrau S, Airoldi E, Budnik B and van Oudenaarden A: Differential stoichiometry among core ribosomal proteins. Cell Rep. 13:865–873. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Gilbert WV: Functional specialization of ribosomes? Trends Biochem Sci. 36:127–132. 2011. View Article : Google Scholar : PubMed/NCBI

17 

O'Leary MN, Schreiber KH, Zhang Y, Duc AC, Rao S, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, et al: The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet. 9. pp. e10037082013, View Article : Google Scholar

18 

Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C and Hay RT: Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep. 9:280–286. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Ishii K, Washio T, Uechi T, Yoshihama M, Kenmochi N and Tomita M: Characteristics and clustering of human ribosomal protein genes. BMC Genomics. 7:372006. View Article : Google Scholar : PubMed/NCBI

20 

Branca RM, Orre LM, Johansson HJ, Granholm V, Huss M, Pérez-Bercoff Å, Forshed J, Käll L and Lehtiö J: HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Meth. 11:59–62. 2014. View Article : Google Scholar

21 

Lafontaine DL: Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol. 22:11–19. 2015. View Article : Google Scholar : PubMed/NCBI

22 

van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E and Simonis M: Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 15:R62014. View Article : Google Scholar : PubMed/NCBI

23 

Lafontaine DL: A ‘garbage can’ for ribosomes: How eukaryotes degrade their ribosomes. Trends Biochem Sci. 35:267–277. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Perry RP: Balanced production of ribosomal proteins. Gene. 401:1–3. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Lam YW, Lamond AI, Mann M and Andersen JS: Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol. 17:749–760. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Warner JR: In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J Mol Biol. 115:315–333. 1977. View Article : Google Scholar : PubMed/NCBI

27 

Lindström MS and Nistér M: Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One. 5:e95782010. View Article : Google Scholar : PubMed/NCBI

28 

Badhai J, Fröjmark AS, Razzaghian HR, Davey E, Schuster J and Dahl N: Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Lett. 583:2049–2053. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Payne EM, Virgilio M, Narla A, Sun H, Levine M, Paw BH, Berliner N, Look AT, Ebert BL and Khanna-Gupta A: L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood. 120:2214–2224. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Lambertsson A: The minute genes in Drosophila and their molecular functions. Adv Genet. 38:69–134. 1998. View Article : Google Scholar : PubMed/NCBI

31 

Stewart MJ and Denell R: Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth. Mol Cell Biol. 13:2524–2535. 1993. View Article : Google Scholar : PubMed/NCBI

32 

Watson KL, Konrad KD, Woods DF and Bryant PJ: Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci USA. 89:11302–11306. 1992. View Article : Google Scholar : PubMed/NCBI

33 

Lin JI, Mitchell NC, Kalcina M, Tchoubrieva E, Stewart MJ, Marygold SJ, Walker CD, Thomas G, Leevers SJ, Pearson RB, et al: Drosophila ribosomal protein mutants control tissue growth non-autonomously via effects on the prothoracic gland and ecdysone. PLoS Genet. 7:e10024082011. View Article : Google Scholar : PubMed/NCBI

34 

Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA and Hopkins N: Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2:E1392004. View Article : Google Scholar : PubMed/NCBI

35 

Lai K, Amsterdam A, Farrington S, Bronson RT, Hopkins N and Lees JA: Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Dev Dyn. 238:76–85. 2009. View Article : Google Scholar :

36 

MacInnes AW, Amsterdam A, Whittaker CA, Hopkins N and Lees JA: Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc Natl Acad Sci USA. 105:10408–10413. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Stadanlick JE, Zhang Z, Lee SY, Hemann M, Biery M, Carleton MO, Zambetti GP, Anderson SJ, Oravecz T and Wiest DL: Developmental arrest of T cells in Rpl22-deficient mice is dependent upon multiple p53 effectors. J Immunol. 187:664–675. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D and Serrano M: Partial Loss of Rpl11 in Adult mice recapitulates diamond-blackfan anemia and promotes lymphomagenesis. Cell Rep. 13:712–722. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Kazerounian S, Ciarlini PD, Yuan D, Ghazvinian R, Alberich-Jorda M, Joshi M, Zhang H, Beggs AH and Gazda HT: Development of soft tissue sarcomas in ribosomal proteins L5 and S24 heterozygous mice. J Cancer. 7:32–36. 2016. View Article : Google Scholar : PubMed/NCBI

40 

McCann KL and Baserga SJ: Genetics. Mysterious ribosomopathies. Science. 341:849–850. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Narla A and Ebert BL: Ribosomopathies: Human disorders of ribosome dysfunction. Blood. 115:3196–3205. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Freed EF, Bleichert F, Dutca LM and Baserga SJ: When ribosomes go bad: Diseases of ribosome biogenesis. Mol Biosyst. 6:481–493. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Choesmel V, Fribourg S, Aguissa-Touré AH, Pinaud N, Legrand P, Gazda HT and Gleizes PE: Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet. 17:1253–1263. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Cmejla R, Cmejlova J, Handrkova H, Petrak J, Petrtylova K, Mihal V, Stary J, Cerna Z, Jabali Y and Pospisilova D: Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Hum Mutat. 30:321–327. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Farrar JE, Nater M, Caywood E, McDevitt MA, Kowalski J, Takemoto CM, Talbot CC Jr, Meltzer P, Esposito D, Beggs AH, et al: Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood. 112:1582–1592. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Flygare J and Karlsson S: Diamond-Blackfan anemia: Erythropoiesis lost in translation. Blood. 109:3152–3154. 2007. View Article : Google Scholar

47 

Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, et al: Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 451:335–339. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Alter BP, Giri N, Savage SA, Peters JA, Loud JT, Leathwood L, Carr AG, Greene MH and Rosenberg PS: Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 150:179–188. 2010.PubMed/NCBI

49 

Majeed F, Jadko S, Freedman MH and Dror Y: Mutation analysis of SBDS in pediatric acute myeloblastic leukemia. Pediatr Blood Cancer. 45:920–924. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Maserati E, Pressato B, Valli R, Minelli A, Sainati L, Patitucci F, Marletta C, Mastronuzzi A, Poli F, Lo Curto F, et al: The route to development of myelodysplastic syndrome/acute myeloid leukaemia in Shwachman-Diamond syndrome: The role of ageing, karyotype instability, and acquired chromosome anomalies. Br J Haematol. 145:190–197. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A and Dokal I: X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 19:32–38. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Ge J, Rudnick DA, He J, Crimmins DL, Ladenson JH, Bessler M and Mason PJ: Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol Cell Biol. 30:413–422. 2010. View Article : Google Scholar :

53 

Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, et al: rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 44:660–666. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Alter BP, Giri N, Savage SA and Rosenberg PS: Cancer in dyskeratosis congenita. Blood. 113:6549–6557. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Donadieu J, Leblanc T, Bader Meunier B, Barkaoui M, Fenneteau O, Bertrand Y, Maier-Redelsperger M, Micheau M, Stephan JL, Phillipe N, et al; French Severe Chronic Neutropenia Study Group; Experience of the French Severe Chronic Neutropenia Study Group. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Haematologica. 90:45–53. 2005.PubMed/NCBI

56 

Danilova N and Gazda HT: Ribosomopathies: How a common root can cause a tree of pathologies. Dis Model Mech. 8:1013–1026. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Ljungström V, Cortese D, Young E, Pandzic T, Mansouri L, Plevova K, Ntoufa S, Baliakas P, Clifford R, Sutton LA, et al: Whole-exome sequencing in relapsing chronic lymphocytic leukemia: Clinical impact of recurrent RPS15 mutations. Blood. Dec 16–2015.(Epub ahead of print).

58 

Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M, Böttcher S, et al: Mutations driving CLL and their evolution in progression and relapse. Nature. 526:525–530. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, et al: Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med. 19:368–371. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Rao S, Lee SY, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z, Jeffers JR, Rhodes M, Anderson S, Oravecz T, et al: Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood. 120:3764–3773. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Ferreira AM, Tuominen I, van Dijk-Bos K, Sanjabi B, van der Sluis T, van der Zee AG, Hollema H, Zazula M, Sijmons RH, Aaltonen LA, et al: High frequency of RPL22 mutations in microsatellite-unstable colorectal and endometrial tumours. Hum Mutat. 35:1442–1445. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Nagarajan N, Bertrand D, Hillmer AM, Zang ZJ, Yao F, Jacques PÉ, Teo AS, Cutcutache I, Zhang Z, Lee WH, et al: Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol. 13:R1152012. View Article : Google Scholar : PubMed/NCBI

63 

Yang M, Sun H, Wang H, Zhang S, Yu X and Zhang L: Down-regulation of ribosomal protein L22 in non-small cell lung cancer. Med Oncol. 30:6462013. View Article : Google Scholar : PubMed/NCBI

64 

Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, Zhu S, Cao Z, Liang Y, Sboner A, et al: PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 46:1227–1232. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Dave B, Granados-Principal S, Zhu R, Benz S, Rabizadeh S, Soon-Shiong P, Yu KD, Shao Z, Li X, Gilcrease M, et al: Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proc Natl Acad Sci USA. 111:8838–8843. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Nakagawa H, Wardell CP, Furuta M, Taniguchi H and Fujimoto A: Cancer whole-genome sequencing: Present and future. Oncogene. 34:5943–5950. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Boria I, Quarello P, Avondo F, Garelli E, Aspesi A, Carando A, Campagnoli MF, Dianzani I and Ramenghi U: A new database for ribosomal protein genes which are mutated in Diamond-Blackfan Anemia. Hum Mutat. 29:E263–E270. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J and Zhang R: Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev. 35:225–285. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Kowalczyk P, Woszczyński M and Ostrowski J: Increased expression of ribosomal protein S2 in liver tumors, post-hepactomized livers, and proliferating hepatocytes in vitro. Acta Biochim Pol. 49:615–624. 2002.

70 

Wang H, Zhao LN, Li KZ, Ling R, Li XJ and Wang L: Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC Cancer. 6:912006. View Article : Google Scholar : PubMed/NCBI

71 

Vaarala MH, Porvari KS, Kyllönen AP, Mustonen MV, Lukkarinen O and Vihko PT: Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: Confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int J Cancer. 78:27–32. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Bee A, Ke Y, Forootan S, Lin K, Beesley C, Forrest SE and Foster CS: Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clin Cancer Res. 12:2061–2065. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Sim EU, Ang CH, Ng CC, Lee CW and Narayanan K: Differential expression of a subset of ribosomal protein genes in cell lines derived from human nasopharyngeal epithelium. J Hum Genet. 55:118–120. 2010. View Article : Google Scholar

74 

Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, et al: Ribosomal proteins RPS11 and RPS20, two stress-response markers of glioblastoma stem cells, are novel predictors of poor prognosis in glioblastoma patients. PLoS One. 10:e01413342015. View Article : Google Scholar : PubMed/NCBI

75 

Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, et al: Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget. 6:37028–37042. 2015.PubMed/NCBI

76 

Kobayashi T, Sasaki Y, Oshima Y, Yamamoto H, Mita H, Suzuki H, Toyota M, Tokino T, Itoh F, Imai K, et al: Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. Int J Mol Med. 18:161–170. 2006.PubMed/NCBI

77 

Song MJ, Jung CK, Park CH, Hur W, Choi JE, Bae SH, Choi JY, Choi SW, Han NI and Yoon SK: RPL36 as a prognostic marker in hepatocellular carcinoma. Pathol Int. 61:638–644. 2011. View Article : Google Scholar : PubMed/NCBI

78 

de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J and LLeonart ME: Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev. 33:115–141. 2014.PubMed/NCBI

79 

De Keersmaecker K, Sulima SO and Dinman JD: Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood. 125:1377–1382. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Ruggero D and Pandolfi PP: Does the ribosome translate cancer? Nat Rev Cancer. 3:179–192. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Warner JR and McIntosh KB: How common are extraribosomal functions of ribosomal proteins? Mol Cell. 34:3–11. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Barkić M, Crnomarković S, Grabusić K, Bogetić I, Panić L, Tamarut S, Cokarić M, Jerić I, Vidak S and Volarević S: The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol Cell Biol. 29:2489–2504. 2009. View Article : Google Scholar

83 

Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Xue S, Ishijima J, Shiroishi T and Barna M: Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell. 145:383–397. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Holmberg Olausson K, Nistér M and Lindström MS: p53-dependent and -independent nucleolar stress responses. Cells. 1:774–798. 2012. View Article : Google Scholar : PubMed/NCBI

85 

James A, Wang Y, Raje H, Rosby R and DiMario P: Nucleolar stress with and without p53. Nucleus. 5:402–426. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Panić L, Tamarut S, Sticker-Jantscheff M, Barkić M, Solter D, Uzelac M, Grabusić K and Volarević S: Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol. 26:8880–8891. 2006. View Article : Google Scholar

87 

McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM, et al: Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet. 40:963–970. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T and Wiest DL: Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity. 26:759–772. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH, et al: A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med. 16:59–66. 2010. View Article : Google Scholar :

90 

Terzian T and Box N: Genetics of ribosomal proteins: ‘curiouser and curiouser’. PLoS Genet. 9:e10033002013. View Article : Google Scholar

91 

Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP and Thomas G: Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol. 11:501–508. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC and Thomas G: Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science. 288:2045–2047. 2000. View Article : Google Scholar : PubMed/NCBI

93 

Jaako P, Flygare J, Olsson K, Quere R, Ehinger M, Henson A, Ellis S, Schambach A, Baum C, Richter J, et al: Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood. 118:6087–6096. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Fumagalli S, Ivanenkov VV, Teng T and Thomas G: Supra-induction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 26:1028–1040. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Teng T, Mercer CA, Hexley P, Thomas G and Fumagalli S: Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol. 33:4660–4671. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Donati G, Peddigari S, Mercer CA and Thomas G: 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 4:87–98. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Sloan KE, Bohnsack MT and Watkins NJ: The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 5:237–247. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindström MS and Zhang Y: An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell. 18:231–243. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Deisenroth C and Zhang Y: Ribosome biogenesis surveillance: Probing the ribosomal protein-Mdm2-p53 pathway. Oncogene. 29:4253–4260. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Miliani de Marval PL and Zhang Y: The RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget. 2:234–238. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Zhang Y and Lu H: Signaling to p53: Ribosomal proteins find their way. Cancer Cell. 16:369–377. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Nishimura K, Kumazawa T, Kuroda T, Katagiri N, Tsuchiya M, Goto N, Furumai R, Murayama A, Yanagisawa J and Kimura K: Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep. 10:1310–1323. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Liu Y, He Y, Jin A, Tikunov AP, Zhou L, Tollini LA, Leslie P, Kim TH, Li LO, Coleman RA, et al: Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc Natl Acad Sci USA. 111:E2414–E2422. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Meng X, Carlson NR, Dong J and Zhang Y: Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways. Oncogene. 34:5709–5717. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Jaako P, Debnath S, Olsson K, Zhang Y, Flygare J, Lindström MS, Bryder D and Karlsson S: Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia. Leukemia. 29:2221–2229. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Lindström MS, Deisenroth C and Zhang Y: Putting a finger on growth surveillance: Insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle. 6:434–437. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Lindström MS, Jin A, Deisenroth C, White Wolf G and Zhang Y: Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol. 27:1056–1068. 2007. View Article : Google Scholar :

108 

Zhang Q, Xiao H, Chai SC, Hoang QQ and Lu H: Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem. 286:38264–38274. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Danilova N, Sakamoto KM and Lin S: Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 112:5228–5237. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Torihara H, Uechi T, Chakraborty A, Shinya M, Sakai N and Kenmochi N: Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. Br J Haematol. 152:648–654. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Uechi T, Nakajima Y, Chakraborty A, Torihara H, Higa S and Kenmochi N: Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond-Blackfan anemia. Hum Mol Genet. 17:3204–3211. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Uechi T, Nakajima Y, Nakao A, Torihara H, Chakraborty A, Inoue K and Kenmochi N: Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS One. 1:e372006. View Article : Google Scholar : PubMed/NCBI

113 

Yadav GV, Chakraborty A, Uechi T and Kenmochi N: Ribosomal protein deficiency causes Tp53-independent erythropoiesis failure in zebrafish. Int J Biochem Cell Biol. 49:1–7. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, et al: TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 29:1971–1979. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Saft L, Karimi M, Ghaderi M, Matolcsy A, Mufti GJ, Kulasekararaj A, Göhring G, Giagounidis A, Selleslag D, Muus P, et al: p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica. 99:1041–1049. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Antunes AT, Goos YJ, Pereboom TC, Hermkens D, Wlodarski MW, Da Costa L and MacInnes AW: Ribosomal Protein mutations result in constitutive p53 protein degradation through impairment of the AKT pathway. PLoS Genet. 11:e10053262015. View Article : Google Scholar : PubMed/NCBI

117 

Heijnen HF, van Wijk R, Pereboom TC, Goos YJ, Seinen CW, van Oirschot BA, van Dooren R, Gastou M, Giles RH, van Solinge W, et al: Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet. 10:e10043712014. View Article : Google Scholar : PubMed/NCBI

118 

Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, et al: Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 29:1524–1534. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Ma H and Pederson T: The nucleolus stress response is coupled to an ATR-Chk1-mediated G2 arrest. Mol Biol Cell. 24:1334–1342. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Danilova N, Bibikova E, Covey TM, Nathanson D, Dimitrova E, Konto Y, Lindgren A, Glader B, Radu CG, Sakamoto KM, et al: The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis Model Mech. 7:895–905. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Padeken J and Heun P: Nucleolus and nuclear periphery: Velcro for heterochromatin. Curr Opin Cell Biol. 28:54–60. 2014. View Article : Google Scholar : PubMed/NCBI

122 

O'Donohue MF, Choesmel V, Faubladier M, Fichant G and Gleizes PE: Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J Cell Biol. 190:853–866. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Peng JC and Karpen GH: H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol. 9:25–35. 2007. View Article : Google Scholar

124 

Boglev Y, Badrock AP, Trotter AJ, Du Q, Richardson EJ, Parslow AC, Markmiller SJ, Hall NE, de Jong-Curtain TA, Ng AY, et al: Autophagy induction is a Tor- and Tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis. PLoS Genet. 9:e10032792013. View Article : Google Scholar : PubMed/NCBI

125 

Donati G, Brighenti E, Vici M, Mazzini G, Treré D, Montanaro L and Derenzini M: Selective inhibition of rRNA transcription downregulates E2F-1: A new p53-independent mechanism linking cell growth to cell proliferation. J Cell Sci. 124:3017–3028. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Donati G, Montanaro L and Derenzini M: Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res. 72:1602–1607. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG and Volarevic S: The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol. Dec 23–2015.(Epub ahead of print). View Article : Google Scholar

128 

Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell JA, Hacot S, Mertani HC, Albaret MA, et al: p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 24:318–330. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW and Dinman JD: Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc Natl Acad Sci USA. 111:5640–5645. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, Ghazvinian R, George TI, Gotlib JR, Beggs AH, Sieff CA, et al: Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med. 20:748–753. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, et al: Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 122:2439–2443. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Amanatiadou EP, Papadopoulos GL, Strouboulis J and Vizirianakis IS: GATA1 and PU.1 bind to ribosomal protein genes in erythroid cells: Implications for ribosomopathies. PLoS One. 10:e01400772015. View Article : Google Scholar : PubMed/NCBI

133 

Loreni F, Mancino M and Biffo S: Translation factors and ribosomal proteins control tumor onset and progression: How? Oncogene. 33:2145–2156. 2014. View Article : Google Scholar

134 

Ingolia NT: Ribosome profiling: New views of translation, from single codons to genome scale. Nat Rev Genet. 15:205–213. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Bhavsar RB, Makley LN and Tsonis PA: The other lives of ribosomal proteins. Hum Genomics. 4:327–344. 2010. View Article : Google Scholar : PubMed/NCBI

136 

Lindström MS: Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun. 379:167–170. 2009. View Article : Google Scholar

137 

Wool IG: Extraribosomal functions of ribosomal proteins. Trends Biochem Sci. 21:164–165. 1996. View Article : Google Scholar : PubMed/NCBI

138 

Naora H, Takai I, Adachi M and Naora H: Altered cellular responses by varying expression of a ribosomal protein gene: Sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol. 141:741–753. 1998. View Article : Google Scholar : PubMed/NCBI

139 

Guo X, Shi Y, Gou Y, Li J, Han S, Zhang Y, Huo J, Ning X, Sun L, Chen Y, et al: Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J Cell Mol Med. 15:296–306. 2011. View Article : Google Scholar

140 

Shi Y, Zhai H, Wang X, Han Z, Liu C, Lan M, Du J, Guo C, Zhang Y, Wu K, et al: Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res. 296:337–346. 2004. View Article : Google Scholar : PubMed/NCBI

141 

Dai MS and Lu H: Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 279:44475–44482. 2004. View Article : Google Scholar : PubMed/NCBI

142 

Daftuar L, Zhu Y, Jacq X and Prives C: Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One. 8:e686672013. View Article : Google Scholar : PubMed/NCBI

143 

Wang S, Huang J, He J, Wang A, Xu S, Huang SF and Xiao S: RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia. 12:284–293. 2010. View Article : Google Scholar : PubMed/NCBI

144 

Krüger T, Zentgraf H and Scheer U: Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins. J Cell Biol. 177:573–578. 2007. View Article : Google Scholar : PubMed/NCBI

145 

Chan YL, Diaz JJ, Denoroy L, Madjar JJ and Wool IG: The primary structure of rat ribosomal protein L10: Relationship to a Jun-binding protein and to a putative Wilms' tumor suppressor. Biochem Biophys Res Commun. 225:952–956. 1996. View Article : Google Scholar : PubMed/NCBI

146 

Houmani JL, Davis CI and Ruf IK: Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol. 83:9844–9853. 2009. View Article : Google Scholar : PubMed/NCBI

147 

Ni JQ, Liu LP, Hess D, Rietdorf J and Sun FL: Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev. 20:1959–1973. 2006. View Article : Google Scholar : PubMed/NCBI

148 

Fahl SP, Harris B, Coffey F and Wiest DL: Rpl22 Loss impairs the development of B lymphocytes by activating a p53-dependent checkpoint. J Immunol. 194:200–209. 2015. View Article : Google Scholar :

149 

Rashkovan M, Vadnais C, Ross J, Gigoux M, Suh WK, Gu W, Kosan C and Möröy T: Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci USA. 111:E5411–E5419. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Montanaro L, Treré D and Derenzini M: Nucleolus, ribosomes, and cancer. Am J Pathol. 173:301–310. 2008. View Article : Google Scholar : PubMed/NCBI

151 

Treré D, Ceccarelli C, Montanaro L, Tosti E and Derenzini M: Nucleolar size and activity are related to pRb and p53 status in human breast cancer. J Histochem Cytochem. 52:1601–1607. 2004. View Article : Google Scholar : PubMed/NCBI

152 

Montanaro L, Treré D and Derenzini M: The emerging role of RNA polymerase I transcription machinery in human malignancy: A clinical perspective. Onco Targets Ther. 6:909–916. 2013.PubMed/NCBI

153 

Drygin D, O'Brien SE, Hannan RD, McArthur GA and Von Hoff DD: Targeting the nucleolus for cancer-specific activation of p53. Drug Discov Today. 19:259–265. 2014. View Article : Google Scholar

154 

Drygin D, Siddiqui-Jain A, O'Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, et al: Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 69:7653–7661. 2009. View Article : Google Scholar : PubMed/NCBI

155 

Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A, et al: Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 71:1418–1430. 2011. View Article : Google Scholar

156 

Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, et al: Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 22:51–65. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ and Laiho M: A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell. 25:77–90. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Colis L, Peltonen K, Sirajuddin P, Liu H, Sanders S, Ernst G, Barrow JC and Laiho M: DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response. Oncotarget. 5:4361–4369. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Morgado-Palacin L, Llanos S, Urbano-Cuadrado M, Blanco-Aparicio C, Megias D, Pastor J and Serrano M: Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis. 35:2822–2830. 2014. View Article : Google Scholar : PubMed/NCBI

160 

Wang M, Hu Y and Stearns ME: RPS2: a novel therapeutic target in prostate cancer. J Exp Clin Cancer Res. 28:62009. View Article : Google Scholar : PubMed/NCBI

161 

Bee A, Brewer D, Beesley C, Dodson A, Forootan S, Dickinson T, Gerard P, Lane B, Yao S, Cooper CS, et al: siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One. 6:e226722011. View Article : Google Scholar : PubMed/NCBI

162 

Marcel V, Catez F and Diaz JJ: Ribosomes: The future of targeted therapies? Oncotarget. 4:1554–1555. 2013. View Article : Google Scholar : PubMed/NCBI

163 

Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, et al; St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 44:251–253. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Goudarzi, K.M., & Goudarzi, K.M. (2016). Role of ribosomal protein mutations in tumor development (Review). International Journal of Oncology, 48, 1313-1324. https://doi.org/10.3892/ijo.2016.3387
MLA
Goudarzi, K. M., Lindström, M. S."Role of ribosomal protein mutations in tumor development (Review)". International Journal of Oncology 48.4 (2016): 1313-1324.
Chicago
Goudarzi, K. M., Lindström, M. S."Role of ribosomal protein mutations in tumor development (Review)". International Journal of Oncology 48, no. 4 (2016): 1313-1324. https://doi.org/10.3892/ijo.2016.3387