Suppression of CD51 in pancreatic stellate cells inhibits tumor growth by reducing stroma and altering tumor-stromal interaction in pancreatic cancer

  • Authors:
    • Kohei Horioka
    • Kenoki Ohuchida
    • Masafumi Sada
    • Biao Zheng
    • Taiki Moriyama
    • Hayato Fujita
    • Tatsuya Manabe
    • Takao Ohtsuka
    • Masaya Shimamoto
    • Tetsuyuki Miyazaki
    • Kazuhiro Mizumoto
    • Yoshinao Oda
    • Masafumi Nakamura
  • View Affiliations

  • Published online on: February 3, 2016     https://doi.org/10.3892/ijo.2016.3374
  • Pages: 1499-1508
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Pancreatic stellate cells (PSCs) enhance the malignant behavior of pancreatic cancer by interacting with cancer cells and producing extracellular matrix (ECM). To date, several stroma-targeted therapies for pancreatic cancer have been attempted, but these therapies are still not in practical use. Integrins expressed in stromal cells are involved in fibrosis of several organs, as well as promoting tumor malignancy. We investigated whether CD51, also known as integrin αV, expressed in PSCs was associated with stromal formation of pancreatic cancer and enhancement of tumor malignancy. We also assessed the effects of suppression of CD51 in PSCs on pancreatic cancer. Immunohistochemistry for CD51 in resected pancreatic cancer tissues showed that high expression of CD51 in the tumor stroma was associated with lymph node metastasis (P=0.025), positive pathologic margin (P=0.025), and shorter patient survival times (P=0.043). Lentivirus-mediated short hairpin RNA knockdown of CD51 decreased the proliferation and migration of PSCs. Quantitative real-time polymerase chain reaction showed that expression levels of genes related with ECM and tumor-stromal interactions were decreased by CD51 knockdown in PSCs. In a co-implantation model of pancreatic cancer cells and PSCs, tumor growth in vivo was inhibited by CD51 knockdown in PSCs (P<0.05). We also found reduced tumor stroma and decreased proliferation of cancer cells in implanted cancer tissues with CD51-silenced PSCs (P<0.05). Our results showed that CD51 expression in pancreatic cancer stroma is associated with enhanced tumor malignancy and that CD51 may be a potential therapeutic target for pancreatic cancer.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM, et al: Stromal biology and therapy in pancreatic cancer. Gut. 60:861–868. 2011. View Article : Google Scholar

3 

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 324:1457–1461. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD and Hingorani SR: Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocar-cinoma. Cancer Cell. 21:418–429. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Moss RA, Moore D, Mulcahy MF, Nahum K, Saraiya B, Eddy S, Kleber M and Poplin EA: A Multi-institutional phase 2 study of imatinib mesylate and gemcitabine for first-line treatment of advanced pancreatic cancer. Gastrointest Cancer Res. 5:77–83. 2012.PubMed/NCBI

6 

Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC and Wilson JS: Periacinar stellate shaped cells in rat pancreas: Identification, isolation, and culture. Gut. 43:128–133. 1998. View Article : Google Scholar : PubMed/NCBI

7 

Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grünert A and Adler G: Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 115:421–432. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Bachem MG, Zhou S, Buck K, Schneiderhan W and Siech M: Pancreatic stellate cells - role in pancreas cancer. Langenbecks Arch Surg. 393:891–900. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB and Logsdon CD: Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 68:918–926. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Vonlaufen A, Joshi S, Qu C, Phillips PA, Xu Z, Parker NR, Toi CS, Pirola RC, Wilson JS, Goldstein D, et al: Pancreatic stellate cells: Partners in crime with pancreatic cancer cells. Cancer Res. 68:2085–2093. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar

12 

Friedrichs K, Ruiz P, Franke F, Gille I, Terpe HJ and Imhof BA: High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 55:901–906. 1995.PubMed/NCBI

13 

Bates RC, Bellovin DI, Brown C, Maynard E, Wu B, Kawakatsu H, Sheppard D, Oettgen P and Mercurio AM: Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest. 115:339–347. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Landen CN, Kim TJ, Lin YG, Merritt WM, Kamat AA, Han LY, Spannuth WA, Nick AM, Jennnings NB, Kinch MS, et al: Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia. 10:1259–1267. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Avraamides CJ, Garmy-Susini B and Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 8:604–617. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Zhu CQ, Popova SN, Brown ER, Barsyte-Lovejoy D, Navab R, Shih W, Li M, Lu M, Jurisica I, Penn LZ, et al: Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc Natl Acad Sci USA. 104:11754–11759. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Taverna D, Moher H, Crowley D, Borsig L, Varki A and Hynes RO: Increased primary tumor growth in mice null for beta3- or beta3/beta5-integrins or selectins. Proc Natl Acad Sci USA. 101:763–768. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Jin H, Su J, Garmy-Susini B, Kleeman J and Varner J: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 66:2146–2152. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Hynes RO: Integrins: Bidirectional, allosteric signaling machines. Cell. 110:673–687. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Ludbrook SB, Barry ST, Delves CJ and Horgan CM: The integrin alphavbeta3 is a receptor for the latency-associated peptides of transforming growth factors beta1 and beta3. Biochem J. 369:311–318. 2003. View Article : Google Scholar

21 

Hinz B: It has to be the αv: Myofibroblast integrins activate latent TGF-β1. Nat Med. 19:1567–1568. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Saalbach A, Wetzel A, Haustein UF, Sticherling M, Simon JC and Anderegg U: Interaction of human Thy-1 (CD 90) with the integrin alphavbeta3 (CD51/CD61): An important mechanism mediating melanoma cell adhesion to activated endothelium. Oncogene. 24:4710–4720. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Wang JT, Liu Y, Kan X, Liu M and Lu JG: Cilengitide, a small molecule antagonist, targeted to integrin alphanu inhibits proliferation and induces apoptosis of laryngeal cancer cells in vitro. Eur Arch Otorhinolaryngol. 271:2233–2240. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E, Matsumoto K, Nakamura T and Tanaka M: Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 64:3215–3222. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Hosotani R, Kawaguchi M, Masui T, Koshiba T, Ida J, Fujimoto K, Wada M, Doi R and Imamura M: Expression of integrin alphaVbeta3 in pancreatic carcinoma: Relation to MMP-2 activation and lymph node metastasis. Pancreas. 25:e30–e35. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Eguchi D, Ikenaga N, Ohuchida K, Kozono S, Cui L, Fujiwara K, Fujino M, Ohtsuka T, Mizumoto K and Tanaka M: Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor. J Surg Res. 181:225–233. 2013. View Article : Google Scholar

27 

Gao Z, Wang X, Wu K, Zhao Y and Hu G: Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology. 10:186–193. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N and Kalluri R: Liver fibrosis: Insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology. 124:147–159. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, Cloud GA, Zhang Y, Carson K, Wittemer SM, et al: Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol. 25:1651–1657. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Horioka, K., Ohuchida, K., Sada, M., Zheng, B., Moriyama, T., Fujita, H. ... Nakamura, M. (2016). Suppression of CD51 in pancreatic stellate cells inhibits tumor growth by reducing stroma and altering tumor-stromal interaction in pancreatic cancer. International Journal of Oncology, 48, 1499-1508. https://doi.org/10.3892/ijo.2016.3374
MLA
Horioka, K., Ohuchida, K., Sada, M., Zheng, B., Moriyama, T., Fujita, H., Manabe, T., Ohtsuka, T., Shimamoto, M., Miyazaki, T., Mizumoto, K., Oda, Y., Nakamura, M."Suppression of CD51 in pancreatic stellate cells inhibits tumor growth by reducing stroma and altering tumor-stromal interaction in pancreatic cancer". International Journal of Oncology 48.4 (2016): 1499-1508.
Chicago
Horioka, K., Ohuchida, K., Sada, M., Zheng, B., Moriyama, T., Fujita, H., Manabe, T., Ohtsuka, T., Shimamoto, M., Miyazaki, T., Mizumoto, K., Oda, Y., Nakamura, M."Suppression of CD51 in pancreatic stellate cells inhibits tumor growth by reducing stroma and altering tumor-stromal interaction in pancreatic cancer". International Journal of Oncology 48, no. 4 (2016): 1499-1508. https://doi.org/10.3892/ijo.2016.3374