Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma

  • Authors:
    • Yoshikazu Togo
    • Yoshie Yoshikawa
    • Toru Suzuki
    • Yoshiro Nakano
    • Akihiro Kanematsu
    • Masataka Zozumi
    • Michio Nojima
    • Seiichi Hirota
    • Shingo Yamamoto
    • Tomoko Hashimoto-Tamaoki
  • View Affiliations

  • Published online on: February 17, 2016     https://doi.org/10.3892/ijo.2016.3395
  • Pages: 1571-1580
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Somatic mutations of the BRCA1 associated protein-1 (BAP1) gene, which maps to 3p21, have been found in several tumors including malignant mesothelioma, uveal melanoma, and renal cell carcinoma (RCC). The role of BAP1 inactivation in tumor development remains unclear. It has been reported that Vhl knock-out mice did not develop RCC, but Vhl knock-out mice with single allele loss of Bap1 in nephron progenitor cells developed RCC, indicating that Bap1 inactivation may be essential in murine renal tumorigenesis. To clarify the role of BAP1 in human RCC development, we performed mutation analyses, including copy number detection of BAP1 and assessment of allelic imbalance using microsatellite polymorphisms on 3p, in 45 RCC samples derived from 45 patients without VHL or BAP1 germline mutation. Additionally, we analyzed the sequences of the VHL, PBRM1, and SETD2 genes, and examined promoter methylation of VHL. Using immunostaining, we also checked for expression of BAP1 protein, which is normally located in the nuclei. None of the RCCs had biallelic deletion of BAP1, but five (11.1%) showed a biallelic mutation (four with a sequence-level mutation with monoallelic loss and one with a biallelic sequence-level mutation); these cells were negative for nuclear BAP1 staining. These patients had worse recurrence-free survival than the patients without a biallelic mutation (p=0.046). However, there were no significant differences in worse outcome by multivariate analysis combined with age, T stage, histological subtype, infiltration and vascular invasion. In 35 RCCs (77.8%), monoallelic loss of BAP1 was accompanied by VHL biallelic mutation or VHL promoter hypermethylation. In five RCCs (11.1%), we detected 3p loss-of-heterozygosity, but the copy number of BAP1 was normal. Surprisingly, nuclear staining of BAP1 was negative in 10 out of 31 tumors (32.3%) with hemizygous normal BAP1, suggesting that haploinsufficiency may relate to RCC development.

References

1 

Angeloni D: Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease. Brief Funct Genomics Proteomics. 6:19–39. 2007. View Article : Google Scholar

2 

Kok K, Naylor SL and Buys CH: Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res. 71:27–92. 1997. View Article : Google Scholar : PubMed/NCBI

3 

Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, et al: Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 7:85–90. 1994. View Article : Google Scholar : PubMed/NCBI

4 

Clifford SC, Prowse AH, Affara NA, Buys CH and Maher ER: Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: Evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer. 22:200–209. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Sükösd F, Kuroda N, Beothe T, Kaur AP and Kovacs G: Deletion of chromosome 3p14.2-p25 involving the VHL and FHIT genes in conventional renal cell carcinoma. Cancer Res. 63:455–457. 2003.PubMed/NCBI

6 

Singh RB and Amare Kadam PS: Investigation of tumor suppressor genes apart from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC). Urol Oncol. 31:1333–1342. 2013. View Article : Google Scholar

7 

Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, et al: Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 469:539–542. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, et al: Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 463:360–363. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A, Leng N, Pavía-Jiménez A, Wang S, Yamasaki T, Zhrebker L, Sivanand S, Spence P, et al: BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 44:751–759. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Guo G, Gui Y, Gao S, Tang A, Hu X, Huang Y, Jia W, Li Z, He M, Sun L, et al: Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 44:17–19. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, Shimamura T, Sato-Otsubo A, Nagae G, Suzuki H, et al: Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 45:860–867. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, Cox NJ, Dogan AU, Pass HI, Trusa S, et al: Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 43:1022–1025. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, Windpassinger C, Wackernagel W, Loy S, Wolf I, et al: Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 43:1018–1021. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, Hovland P and Davidorf FH: Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 48:856–859. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Carbone M, Ferris LK, Baumann F, Napolitano A, Lum CA, Flores EG, Gaudino G, Powers A, Bryant-Greenwood P, Krausz T, et al: BAP1 cancer syndrome: Malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 10:1792012. View Article : Google Scholar : PubMed/NCBI

16 

Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d'Enghien C, Richaudeau B, Renaudin X, Sellers J, Nicolas A, et al: Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 92:974–980. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Farley MN, Schmidt LS, Mester JL, Peña-Llopis S, Pavia-Jimenez A, Christie A, Vocke CD, Ricketts CJ, Peterson J, Middelton L, et al: A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res. 11:1061–1071. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Liao L, Testa JR and Yang H: The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer. Cancer Genet. 208:206–214. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Wang SS, Gu YF, Wolff N, Stefanius K, Christie A, Dey A, Hammer RE, Xie XJ, Rakheja D, Pedrosa I, et al: Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci USA. 111:16538–16543. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Peña-Llopis S, Christie A, Xie XJ and Brugarolas J: Cooperation and antagonism among cancer genes: The renal cancer paradigm. Cancer Res. 73:4173–4179. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW and Müller J: Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 465:243–247. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C and Bowcock AM: Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 330:1410–1413. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Ewens KG, Kanetsky PA, Richards-Yutz J, Purrazzella J, Shields CL, Ganguly T and Ganguly A: Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Invest Ophthalmol Vis Sci. 55:5160–5167. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Yoshikawa Y, Sato A, Tsujimura T, Emi M, Morinaga T, Fukuoka K, Yamada S, Murakami A, Kondo N, Matsumoto S, et al: Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 103:868–874. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Emi M, Yoshikawa Y, Sato C, Sato A, Sato H, Kato T, Tsujimura T, Hasegawa S, Nakano T and Hashimoto-Tamaoki T: Frequent genomic rearrangements of BRCA1 associated protein-1 (BAP1) gene in Japanese malignant mesothelioma-characterization of deletions at exon level. J Hum Genet. 60:647–649. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, Creaney J, Lake RA, Zakowski MF, Reva B, et al: The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 43:668–672. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Zauderer MG, Bott M, McMillan R, Sima CS, Rusch V, Krug LM and Ladanyi M: Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations. J Thorac Oncol. 8:1430–1433. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Arzt L, Quehenberger F, Halbwedl I, Mairinger T and Popper HH: BAP1 protein is a progression factor in malignant pleural mesothelioma. Pathol Oncol Res. 20:145–151. 2014. View Article : Google Scholar

29 

Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, Baumann F, Zhang YA, Gazdar A, et al: High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 10:565–576. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Mori T, Sumii M, Fujishima F, Ueno K, Emi M, Nagasaki M, Ishioka C and Chiba N: Somatic alteration and depleted nuclear expression of BAP1 in human esophageal squamous cell carcinoma. Cancer Sci. 106:1118–1129. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Yu H, Mashtalir N, Daou S, Hammond-Martel I, Ross J, Sui G, Hart GW, Rauscher FJ III, Drobetsky E, Milot E, et al: The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol. 30:5071–5085. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Mashtalir N, Daou S, Barbour H, Sen NN, Gagnon J, Hammond-Martel I, Dar HH, Therrien M and Affar B: Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol Cell. 54:392–406. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC and Lander ES: A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 131:423–447. 1992.PubMed/NCBI

34 

Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X and Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6:80–92. 2012. View Article : Google Scholar

35 

Liu X, Jian X and Boerwinkle E: dbNSFP v2.0: A database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 34:E2393–E2402. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Herman JG, Graff JR, Myöhänen S, Nelkin BD and Baylin SB: Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93:9821–9826. 1996. View Article : Google Scholar : PubMed/NCBI

37 

Kapur P, Christie A, Raman JD, Then MT, Nuhn P, Buchner A, Bastian P, Seitz C, Shariat SF, Bensalah K, et al: BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol. 191:603–610. 2014. View Article : Google Scholar

38 

Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, et al: Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 46:225–233. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Ibragimova I, Maradeo ME, Dulaimi E and Cairns P: Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics. 8:486–493. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M, Liu H, Takeda S, Voss MH, Tickoo SK, et al; ccRCC Cancer Genome Atlas (KIRC TCGA) Research Network investigators. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: A report by MSKCC and the KIRC TCGA research network. Clin Cancer Res. 19:3259–3267. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Togo, Y., Yoshikawa, Y., Suzuki, T., Nakano, Y., Kanematsu, A., Zozumi, M. ... Hashimoto-Tamaoki, T. (2016). Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma. International Journal of Oncology, 48, 1571-1580. https://doi.org/10.3892/ijo.2016.3395
MLA
Togo, Y., Yoshikawa, Y., Suzuki, T., Nakano, Y., Kanematsu, A., Zozumi, M., Nojima, M., Hirota, S., Yamamoto, S., Hashimoto-Tamaoki, T."Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma". International Journal of Oncology 48.4 (2016): 1571-1580.
Chicago
Togo, Y., Yoshikawa, Y., Suzuki, T., Nakano, Y., Kanematsu, A., Zozumi, M., Nojima, M., Hirota, S., Yamamoto, S., Hashimoto-Tamaoki, T."Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma". International Journal of Oncology 48, no. 4 (2016): 1571-1580. https://doi.org/10.3892/ijo.2016.3395