Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells

  • Authors:
    • Wei He
    • Xiujin Ye
    • Xianbo Huang
    • Wen Lel
    • Liangshun You
    • Lei Wang
    • Xiaohui Chen
    • Wenbin Qian
  • View Affiliations

  • Published online on: February 8, 2016     https://doi.org/10.3892/ijo.2016.3382
  • Pages: 1710-1720
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Development of drug resistance due to BCR-ABL point mutations and the persistence of leukemia initiating cells has become a major obstacle for tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML). The BCR-ABL protein is an important client protein of heat shock protein 90 (Hsp90). BIIB021, an orally available Hsp90 inhibitor, has activity against various cancer cells. However, little is known about the inhibitory effect of BIIB021 on CML cells. We evaluated the inhibitory effects of BIIB021 on K562, K562/G (an imatinib-resistant cell lines), as well as 32D mouse leukemic cells expressing wild-type BCR-ABL (b3a2, 32Dp210) and T315I mutant BCR-ABL (32Dp210-T315I) cells. Our data showed that BIIB021 induced significant growth inhibition and apoptosis that was predominantly mediated by the mitochondrial pathway. BIIB021 also resulted in proteasomal degradation of BCR-ABL proteins. In addition to induction of apoptosis, we report for the first time that BIIB021 induced autophagic response as evidenced by the formation of autophagosome, increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, decreased p62 (SQSTM1) protein levels. Further study suggested that Akt-mTOR-Ulk1 signaling pathway was involved in BIIB021-triggered autophagy. Moreover, blocking autophagy using pharmacological inhibitor 3-methyladenine and bafilomycin A1 significantly enhanced cell death and apoptosis induced by BIIB021, indicating the cytoprotective role of autophagy in BIIB021-treated CML cells. Collectively, these data provide possible molecular mechanisms for the antileukemic effect of BIIB021 on imatinib-sensitive and -resistant CML cells and provide new insights into the future application of BIIB021 in the clinical treatment of CML.

References

1 

Clark SS, Crist WM and Witte ON: Molecular pathogenesis of Ph-positive leukemias. Annu Rev Med. 40:113–122. 1989. View Article : Google Scholar : PubMed/NCBI

2 

Danisz K and Blasiak J: Role of anti-apoptotic pathways activated by BCR/ABL in the resistance of chronic myeloid leukemia cells to tyrosine kinase inhibitors. Acta Biochim Pol. 60:503–514. 2013.PubMed/NCBI

3 

Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE and McCubrey JA: JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 18:189–218. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, et al: Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 16:6151–6161. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Lin TS, Mahajan S and Frank DA: STAT signaling in the pathogenesis and treatment of leukemias. Oncogene. 19:2496–2504. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Deininger M, Buchdunger E and Druker BJ: The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 105:2640–2653. 2005. View Article : Google Scholar

7 

Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, Cortes J, O'Brien S, Nicaise C, Bleickardt E, et al: Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 354:2531–2541. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B, Tanaka C, Manley P, Rae P, Mietlowski W, et al: Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 354:2542–2551. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Hoy SM: Ponatinib: A review of its use in adults with chronic myeloid leukaemia or Philadelphia chromosome-positive acute lymphoblastic leukaemia. Drugs. 74:793–806. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O'Hare T, Hu S, Narasimhan NI, Rivera VM, et al: Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 367:2075–2088. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Bishop SC, Burlison JA and Blagg BS: Hsp90: A novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets. 7:369–388. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Isaacs JS, Xu W and Neckers L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 3:213–217. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Nimmanapalli R, O'Bryan E and Bhalla K: Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res. 61:1799–1804. 2001.PubMed/NCBI

14 

Tao W, Chakraborty SN, Leng X, Ma H and Arlinghaus RB: HSP90 inhibitor AUY922 induces cell death by disruption of the Bcr-Abl, Jak2 and HSP90 signaling network complex in leukemia cells. Genes Cancer. 6:19–29. 2015.PubMed/NCBI

15 

Wu LX, Xu JH, Zhang KZ, Lin Q, Huang XW, Wen CX and Chen YZ: Disruption of the Bcr-Abl/Hsp90 protein complex: A possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin. Leukemia. 22:1402–1409. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Tong WG, Estrov Z, Wang Y, O'Brien S, Faderl S, Harris DM, Van Pham Q, Hazan-Halevy I, Liu Z, Koch P, et al: The synthetic heat shock protein 90 (Hsp90) inhibitor EC141 induces degradation of Bcr-Abl p190 protein and apoptosis of Ph-positive acute lymphoblastic leukemia cells. Invest New Drugs. 29:1206–1212. 2011. View Article : Google Scholar

17 

Lundgren K, Zhang H, Brekken J, Huser N, Powell RE, Timple N, Busch DJ, Neely L, Sensintaffar JL, Yang YC, et al: BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther. 8:921–929. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Zhang H, Neely L, Lundgren K, Yang YC, Lough R, Timple N and Burrows F: BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int J Cancer. 126:1226–1234. 2010.

19 

Chen W, Sin SH, Wen KW, Damania B and Dittmer DP: Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog. 8:e10030482012. View Article : Google Scholar : PubMed/NCBI

20 

Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey MN, Goshima F, Murata T, Kawada J, Ito Y, et al: The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 6:2802015.PubMed/NCBI

21 

Saif MW, Takimoto C, Mita M, Banerji U, Lamanna N, Castro J, O'Brien S, Stogard C and Von Hoff D: A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin Cancer Res. 20:445–455. 2014. View Article : Google Scholar

22 

Dickson MA, Okuno SH, Keohan ML, Maki RG, D'Adamo DR, Akhurst TJ, Antonescu CR and Schwartz GK: Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol. 24:252–257. 2013. View Article : Google Scholar

23 

Lin S, Li J, Zhou W, Qian W, Wang B and Chen Z: BIIB021, an Hsp90 inhibitor, effectively kills a myelodysplastic syndrome cell line via the activation of caspases and inhibition of PI3K/Akt and NF-κB pathway proteins. Exp Ther Med. 7:1539–1544. 2014.PubMed/NCBI

24 

Li M, Zhang X, Zhou WJ, Chen YH, Liu H, Liu L, Yang CM and Qan WB: Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin. 34:1545–1553. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Qian W, Liu J, Jin J, Ni W and Xu W: Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res. 31:329–339. 2007. View Article : Google Scholar

26 

Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, Kalaitzidis D, Lane SW and Armstrong SA: Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell. 10:412–424. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Coluccia AM, Vacca A, Duñach M, Mologni L, Redaelli S, Bustos VH, Benati D, Pinna LA and Gambacorti-Passerini C: Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J. 26:1456–1466. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H and Yamamoto T: Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 46:47–54. 2015.

29 

Del Bufalo D, Desideri M, De Luca T, Di Martile M, Gabellini C, Monica V, Busso S, Eramo A, De Maria R, Milella M, et al: Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol Cancer. 13:2302014. View Article : Google Scholar : PubMed/NCBI

30 

Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J and Zhang L: Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res. 71:3625–3634. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, et al: Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1:e182010. View Article : Google Scholar : PubMed/NCBI

32 

Yang Z and Klionsky DJ: Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar :

33 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Peng C, Brain J, Hu Y, Goodrich A, Kong L, Grayzel D, Pak R, Read M and Li S: Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood. 110:678–685. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Barnes DJ, De S, van Hensbergen P, Moravcsik E and Melo JV: Different target range and cytotoxic specificity of adaphostin and 17-allylamino-17-demethoxygeldanamycin in imatinib-resistant and sensitive cell lines. Leukemia. 21:421–426. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Green DR and Kroemer G: Pharmacological manipulation of cell death: Clinical applications in sight? J Clin Invest. 115:2610–2617. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Goussetis DJ, Gounaris E, Wu EJ, Vakana E, Sharma B, Bogyo M, Altman JK and Platanias LC: Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood. 120:3555–3562. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Elzinga BM, Nyhan MJ, Crowley LC, O'Donovan TR, Cahill MR and McKenna SL: Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol. 88:455–462. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L and Holyoake TL: Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 99:319–325. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, Arber DA, Slovak ML and Forman SJ: Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 101:4701–4707. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, Ferenchak G, Dorrance AM, Paisie CA, Eiring AM, et al: PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest. 123:4144–4157. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Tong Y, Liu YY, You LS and Qian WB: Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacol Sin. 33:542–550. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Kamitsuji Y, Kuroda J, Kimura S, Toyokuni S, Watanabe K, Ashihara E, Tanaka H, Yui Y, Watanabe M, Matsubara H, et al: The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias. Cell Death Differ. 15:1712–1722. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Helgason GV, Karvela M and Holyoake TL: Kill one bird with two stones: Potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood. 118:2035–2043. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Can G, Ekiz HA and Baran Y: Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells. Hematology. 16:95–99. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N, Vignon C, Park S, Guichard S, Herault O, et al: The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 26:1195–1202. 2012. View Article : Google Scholar

47 

Altman JK, Szilard A, Goussetis DJ, Sassano A, Colamonici M, Gounaris E, Frankfurt O, Giles FJ, Eklund EA, Beauchamp EM, et al: Autophagy is a survival mechanism of acute myelogenous leukemia precursors during dual mTORC2/mTORC1 targeting. Clin Cancer Res. 20:2400–2409. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 95:819–828. 2010. View Article : Google Scholar :

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
He, W., Ye, X., Huang, X., Lel, W., You, L., Wang, L. ... Qian, W. (2016). Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells. International Journal of Oncology, 48, 1710-1720. https://doi.org/10.3892/ijo.2016.3382
MLA
He, W., Ye, X., Huang, X., Lel, W., You, L., Wang, L., Chen, X., Qian, W."Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells". International Journal of Oncology 48.4 (2016): 1710-1720.
Chicago
He, W., Ye, X., Huang, X., Lel, W., You, L., Wang, L., Chen, X., Qian, W."Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells". International Journal of Oncology 48, no. 4 (2016): 1710-1720. https://doi.org/10.3892/ijo.2016.3382