Abstract. Human liver cancer is one of the most frequently diagnosed cancers worldwide. The development of resistance to therapy limits the application against the disease. To improve treatment, new effective anticancer agents are constantly pursued. Previously, we reported that an indolylquinoline, 3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline (EMMQ), is effective in suppressing the growth of human lung cancer by impairing mitochondria functions. The present study revealed that EMMQ inhibited cell growth and induced apoptosis in liver cancer cells, but not in normal cells. This study demonstrated that EMMQ induced cell growth and induced apoptosis in liver cancer cells, but not in normal cells. The study demonstrated that EMMQ induced DNA damage by activating p53 and γ-H2AX and cell arrest by suppressing cyclin D1 and CDK2. Damaged DNA injured mitochondrial functions by lowering the membrane potential and producing reactive oxygen species. The subsequent mitochondrial cytochrome c release attenuated pro-survival signals and increased apoptotic characteristics. Introduction of p53 shRNA abrogated drug effects by reducing DNA damage while maintaining mitochondria integrity. In brief, the study demonstrates that the effectiveness of EMMQ accentuated apoptosis of hepatocarcinoma cells by activating p53. Based on these collective findings, the study offered a new perspective of EMMQ that was shown to be a promising candidate to treat liver cancer.

Introduction

Liver cancer is one of the most frequently encountered cancers and the second most frequent cause of cancer-related death worldwide (1,2). The most common type of liver cancer is hepatocellular carcinoma (HCC) that accounts for 85-90% of the liver cancer (3). Currently, platinum-analogue agents are the widely used chemotherapeutic drugs for treating HCC (4). The platinum-based analogs, including cisplatin and carboplatin, formed DNA crosslinks that significantly attenuated the growth of tumors. However, their use is restricted by the development of resistance (5-7). The acquired drug resistance to platinum analogue regimen is responsible for the diminished efficacy in HCC patient treatments. Therefore, more new effective therapy strategies are constantly needed.

Previously, we reported that a small molecular weight indolylquinoline derivative with connection of indole and quinoline functional groups, 3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline (EMMQ), that reduced the growth of human lung cancer cells through apoptotic death (8). The newly synthetic EMMQ available in the authors' group has not been assessed for preventive, protective and usefulness in different diseases. To demonstrate the effectiveness of the compound, more systematic investigations in different types of cancer are undertaken. This study found that EMMQ is effective in suppressing the growth in HCC cells and the developed apoptosis accounts for the drug sensitivity. The study showed that the reduced cell viabilities in HepG2 cells began with DNA damage, followed by the decrease of mitochondrial membrane potential (ΔΨm). Generation of reactive oxygen species (ROS) and release of cytochrome c contributed to final apoptotic cell death. The development of apoptosis in HepG2 cells began with DNA damage and activation of tumor suppressor p53 that contributed to cleavage of poly(ADP-ribose) polymerase (PARP) and procaspase-3 in addition to attenuation of pro-survival signals. Furthermore, transfection of small hairpin RNA (shRNA) of p53 suppressed DNA damage and restored mitochondrial functions that recovered cell viabilities and reduced drug sensitivity. In view of the constant need to acquire more drugs for chemotherapy, the elucidated mechanism provides EMMQ a new perspective to treat human liver cancer cells.

Materials and methods

Cell culture and chemicals. Human hepatocellular carcinoma cell lines, HepG2 (wild-type p53) and Hep3B (p53-null) were acquired from the American Type Culture Collection (ATCC; Manassas, VA, USA). Huh7 (mutant p53) cells were from the Japanese Collection of Research Bioresources (http://
for 48 h at 37˚C and 5% CO₂ treated with various concentrations of EMMQ or vehicle control. Cells were seeded at 500 cells/well in a 12-well plates for 16 h to allow for attachment. The cells were

Colony forming assay. Cells were seeded at 5x10⁵ cells/dish in 12-well plates at a density of 1x10⁵ cells/well and incubated with various concentrations of EMMQ and incubated at 37˚C for 48 h. The cells were trypsinized and stained with 1 µl Annexin V-FITC (20 µg/ml; BD Biosciences) and 1 µl of PI (50 µg/ml) at 37˚C for 30 min in the dark. The early and late phase of apoptosis was analyzed by Annexin V-FITC/PI apoptosis detection kit (BD Biosciences). The flow cytometer FACSCalibur™ (BD Biosciences) was used for analysis. Data were analyzed using FlowJo software (FlowJo, LLC Ashland, OR, USA).

Double staining with Annexin V-FITC and PI. Cells were seeded at 1x10⁵ cells/well in 12-well plates and treated with various concentrations of EMMQ and incubated at 37˚C for 48 h. The cells were trypsinized and stained with 1 µl Annexin V/PI (20 µg/ml; BD Biosciences) and the fluorescence intensity was recorded by flow cytometer FACSCalibur™ (BD Biosciences) and the fluorescence intensity was recorded by flow cytometer FACSCalibur™ (BD Biosciences) and quantified using FlowJo software (FlowJo, LLC Ashland, OR, USA).

Measurement of intracellular reactive oxygen species. The intracellular reactive oxygen species (ROS) was detected by staining cells with 2’,7’-dichlorodihexoyfluorescein diacetate (DCF-DA). The hepatocellular carcinoma cells were cultured in 12-well plates at a density of 1x10⁵ cells/well and incubated with various concentrations of EMMQ for 6 and 24 h, respectively. Cells were incubated with 10 µM DCF-DA for 30 min at 37˚C. Cells were washed twice with PBS (pH 7.4), and the fluorescence intensity was recorded by flow cytometer FACSCalibur™ (BD Biosciences). The flow cytometer FACSCalibur™ (BD Biosciences) was used for analysis. Data were analyzed using the FlowJo software.

Mitochondrial membrane potential (ΔΨm). Mitochondrial membrane potential was determined using MitoPT™ JC-1 assay kit (ImmunoChemistry Technologies, Bloomingtin, IN, USA). Briefly, the cells were cultured in medium containing various concentration of EMMQ and incubated at 37˚C for different time-points. The collected cells were washed with 1X assay buffer. After centrifugation at 1,000 rpm for 5 min, cell pellets were stained with 250 µl mixture containing 5 µl of 5,5’6,6’-tetrachloro-1,1’3,3’-tetraethyl benzimidazolocarbocyanine iodide (JC-1) with 995 µl 1X assay buffer for 25 min at 37˚C. The residual JC-1 were removed by centrifugation at 1,000 rpm for 5 min. The pellet was mixed with 1X assay buffer. JC-1 fluorescence was measured to assess the emission shift from green (530 nm) to red (590 nm) using the 488 nm excitation wavelength. Data were given as the relative ratio of green to red fluorescence intensities, indicating the level of depolarization of the mitochondrial membrane potential. The FACSCalibur flow cytometer (BD Biosciences) was used for analysis. Data were quantified and expressed as the percentage of mitochondrial membrane potential decline relative to control cells.

Western blot analysis. The collected cells were lysed and the protein concentrations quantitated using BCA assay (Pierce Biotechnology, Rockford, IL, USA). The total 20 µg of protein was resolved by electrophoresis through SDS-PAGE gel. The gel was transferred to nitrocellulose filters, blocked with 5% of skim milk (BD Biosciences, Mansfield, MA, USA) and incubated with primary antibody for 24 h followed by horseradish-conjugated secondary antibodies. The emitted chemiluminescence signals were visualized by ECL detection kit (Millipore, Darmstadt, Germany).

Transfection with small hairpin RNA (shRNA). The HepG2 hepatocellular carcinoma cells were seeded at 5x10⁵ cells/dish in 60-mm dishes and incubated overnight. Cells were trans-
fected with shRNA targeting of p53 with non-specific shRNA (NS) as control prior to treatment. After a period of 24-h transfection, cells were treated with EMMQ for 48 h. Cell lysates were collected for western blot analysis. Small hairpin RNA targeting RNA sequence of p53 (CACCAUCCACUA CAACUACAU) along with that of scrambled NS gene (CC GGACACUCGAGCACUUUUUG) were acquired from the National RNAi Platform (Academia Sinica, Taipei, Taiwan).

Isolation of mitochondria and cytosol fractions. Mitochondria and cytosol fractions were separated using the kit according to the manufacturer's instructions (BioVision, Milpitas, CA, USA). The total 5x10^5 cells were collected after centrifugation at 600 x g for 5 min at 4°C. Cells were washed with 10 ml of ice-cold PBS and centrifuged at 600 x g for 5 min at 4°C. The supernatant was removed. Cells were mixed with 1.0 ml of 1X cytosol extraction buffer mixture containing DTT and protease inhibitors and incubated on ice for 10 min. The homogenate was transferred to a 1.5 ml microcentrifuge tube and centrifuged at 700 x g for 10 min in 4°C. The supernatant was gathered and the pellet discarded. The collected supernatant was centrifuged at 10,000 x g for 30 min at 4°C. The supernatant was stored at -80°C (cytosol fraction) and the pellets were resuspended in 100 µl of 1X mitochondrial extraction buffer mixture containing 1,4-dithiothreitol (Aldrich-Sigma) and protease inhibitors. The mitochondrial fraction mixture was stored at -80°C. Both lysed cytosol and mitochondrial fractions were used for western blot analysis.

Statistical analysis. Experiments were performed independently three times. The differences between the treated and the control cells were analyzed using the Student's t-test between the two groups, or one-way ANOVA was applied to compare more than two groups. The data were expressed as mean values ± SD of three independent experiments and P<0.05 considered statistically significant.

Results

EMMQ inhibits cell proliferation in human liver cancer cells. Morphological examination showed that HepG2 cells became round and blunt in shape with smaller sizes as EMMQ concentrations were increased after 48-h treatment; while there was no effect observed in Huh7 and Hep3B cells (Fig. 1A).
EMMQ-reduced cell viability in HepG2 cells was dose-dependent with an IC₅₀ of 5 µM as shown in MTT assay (Fig. 1B). No apparent growth inhibition was observed in Huh7 and Hep3B cells or normal human hepatic cells L02 within the concentrations studied. In addition, the colony formation capacity was significantly suppressed in HepG2 cells with increasing EMMQ concentrations (Fig. 1D). The number of colonies was reduced to <50% of the control as the drug concentration was raised to 5 µM and there showed no apparent inhibitory effect in cells with mutated p53 (Fig. 1D).

Figure 2. EMMQ treatment induced cell cycle distribution changes. (A) Huh7, HepG2 and Hep3B cells were treated with various concentrations of EMMQ, stained with PI and determined for cell cycle distribution by flow cytometry as described in Materials and methods. The sub-G₀ phase cells were increased with escalating EMMQ concentrations in HepG2 cell after 48 h. *P<0.05 and **P<0.01. (B) Two-dimensional flow analysis in cells treated with various concentrations of EMMQ for 48 h and analyzed by flow cytometry after double staining cells with Annexin V-FITC/PI. (C) Quantitative analysis of apoptotic cell populations. Both the early (dark), late (grey) and total (light) apoptotic population distribution in cells treated with various concentrations of EMMQ or DMSO control, D, are expressed as mean values ± SD from three independent experiments. (D) Protein lysates as collected from HepG2 cells after treating with various concentrations of EMMQ for 24 h were subjected to western blot analysis by incubating with antibodies against PARP, p53, cyclin D1, CDK2 and control α-tubulin, followed by 1:3,000 dilution of horseradish peroxidase-conjugated secondary antibody and then developed by ECL detection system. The numbers underneath each band signify relative intensities at each concentration by comparing with that of vehicle control DMSO, D. (E) The induced G₀/G₁ cell accumulation in HepG2 cells after 24 h with various concentrations of EMMQ as analyzed by PI-stained flow cytometry. *P<0.05.
EMMQ increases sub-G₁ population cells, G₁ arrest and apoptosis in HepG2 cells. To evaluate whether EMMQ disturbed cell cycle distribution, cells were treated with various concentrations of EMMQ for 48 h and analyzed by flow cytometry following PI staining. Compared with vehicle control, EMMQ increased sub-G₁ populations in HepG2 cells and the effects were dose-dependent, while both Huh7 and Hep3B cells were not changed (Fig. 2A). Furthermore, HepG2 cells exposed to various concentrations of EMMQ were treated with EMMQ at various concentrations for 24 h. Cells were evaluated for DNA damage by comet assay. The increased DNA damage appeared as smeared tail (pointed arrow) in HepG2 cells (Fig. 2B). The results of comet assay were quantified using CometScore™ software and scored for tail moments that equal the measured tail length multiplied with fraction of total DNA in the tail. The tail moments were expressed as mean values ± SD and *P<0.05 and **P<0.01 indicate a significant difference from three independent experiments. (C) All Huh7, HepG2 and Hep3B cells were treated with EMMQ at various concentrations for 24 h. Cells were evaluated for DNA damage by comet assay. The increased DNA damage appeared as smeared tail (pointed arrow) in HepG2 cells. (D) All Huh7, HepG2 and Hep3B cells were treated with EMMQ at various concentrations for 24 h. The results of comet assay were quantified using CometScore™ software and scored for tail moments that equal the measured tail length multiplied with fraction of total DNA in the tail. The tail moments were expressed as mean values ± SD and *P<0.05 and **P<0.01 indicate a significant difference from three independent experiments. (E) Protein lysates as collected from HepG2 cells after treating with various concentrations of EMMQ for 3, 6 and 12 h were examined for western blot analysis with GAPDH (glyceraldehyde-3-phosphate dehydrogenase) as loading control. The blots were incubated with γ-H2AX antibody, followed by secondary antibody and visualized by ECL detection system. The numbers underneath represented relative intensities by comparing treatment of various concentrations with that of vehicle control DMSO, D, at each time-point.

EMMQ increases sub-G₁ population cells, G₁ arrest and apoptosis in HepG2 cells. To evaluate whether EMMQ disturbed cell cycle distribution, cells were treated with various concentrations of the drug for 48 h and analyzed by flow cytometry following PI staining. Compared with vehicle control, EMMQ increased sub-G₁ populations in HepG2 cells and the effects were dose-dependent, while both Huh7 and Hep3B cells were not changed (Fig. 2A). Furthermore, HepG2 cells exposed to various concentrations of EMMQ were analyzed by Annexin V and PI double staining-based assay flow cytometry (Fig. 2B). By treating with 10 µM of EMMQ for 48 h, cells of early and late apoptotic phase populations rose to 27 and 31%, respectively (Fig. 2C). The results implied that the enhanced sub-G₁ populations contributed to decreased cell viabilities in HepG2 cells.

EMMQ induces HepG2 cell apoptosis because of DNA damage. The extent of DNA damage at various concentrations and different time-points were determined by comet assay. The nucleus-excluded tails with migration smear indicating DNA lesions emerged 3 h after EMMQ treatment (Fig. 3A). The dose-dependent development of the excluded tail length in HepG2 cells began 3 h after EMMQ treatment and rose temporally (Fig. 3B). There is no apparent tail length forma-
tion in Huh7 and Hep3B cells within the concentrations studied after 24-h treatment (Fig. 3C and D).

Western blot analysis showed that EMMQ activated double-strand DNA break marker γ-H2AX after 3-h treatment. The increased drug concentrations accentuated time-course increment of DNA damage signals (Fig. 3E). The results suggested that human liver cancer cells with wild-type p53 were susceptible to DNA damage by EMMQ.

Figure 4. EMMQ reduces mitochondrial membrane potential (ΔΨm) and enhances cytochrome c release in HepG2 cells. (A) ΔΨm changes after EMMQ treatment. Cells treated with various concentrations of EMMQ in HepG2 cells for 3 and 6 h were evaluated for relative ΔΨm changes. Data are presented as the mean values ± SD. *P<0.05 indicated a significant difference with vehicle control DMSO in HepG2 cells from three independent experiments. (B) Relative ROS changes. The Huh7, HepG2 and Hep3B cells were treated with various concentrations of EMMQ for 24 h. For each cell line, the detected ROS levels were compared with that of cells treated with DMSO that served as 100% control. **P<0.01 indicated a significant difference against the vehicle control cells from three independent experiments. (C) Temporal ROS changes in HepG2 cells. Cells treated with different concentrations of EMMQ in HepG2 cells after 6 and 24 h were evaluated for relative ROS changes. Data are presented as the mean values ± SD. *P<0.05 indicates a significant difference against vehicle control in HepG2 cells from three independent experiments. (D) Western blot analysis. The lysates of the respective mitochondrial and cytosolic fractions from HepG2 cells after 24-h treatment of EMMQ were collected as described in Materials and methods. The protein was subjected to western blot analysis. The blots were incubated with antibodies against cytosol marker, α-tubulin, mitochondria markers, HSP-60, and cytochrome c, respectively, followed by incubation with a 1:3,000 dilution of horseradish peroxidase-conjugated secondary antibody and then developed by ECL detection system. The numbers underneath signify relative intensities compared with the results of DMSO, D, treatment. (E) The released mitochondrial cytochrome c in HepG2 cells treated with 1, 5 or 10 μM of EMMQ or vehicle control DMSO for 24 h were fixed and incubated with antibody against cytochrome c followed by incubating with secondary antibody conjugated with TRITC (red). The slides were counterstained with mitotracker (green) and DAPI (blue) before being analyzed by confocal microscopy. The pointed arrows signify co-localization of red color cytochrome c and green color mitochondria, while blue indicates the nucleus (scale, 25 μm).

EMMQ induces HepG2 cells apoptosis through mitochondrial membrane permeabilization (ΔΨm) loss and ROS production. The mitochondria-related apoptotic pathway can be linked to membrane potential disruption that signaled dysfunction of the organelle. After 6-h treatment, EMMQ initiated loss of ΔΨm by more than 50% in HepG2 cells compared with vehicle control (Fig. 4A). As cells undergo stress, ROS contributed to cell cycle arrest or final apoptosis.
Flow cytometry in cells stained with fluorescent dye DCF-DA is a good marker to measure membrane potential variations. Compared to DMSO treatment, the increased fluorescence intensities as measured by flow cytometry suggested that intracellular ROS was developed in HepG2 cells by EMMQ, but not in Hep3B and Huh7 cells (Fig. 4B), and the intensities arose to more than 50% after 24-h treatment relative to control (Fig. 4C).

EMMQ induces mitochondrial cytochrome c release in HepG2 cells. The impaired mitochondrial functions were further established by cytochrome c release in HepG2 cells after 24-h treatment with increasing drug concentrations. Western blot analysis of the protein lysates in the collected cells showed that the increased intensity of cytochrome c in cytosol by EMMQ relative to vehicle control were at the expense of that in mitochondria (Fig. 4D). More experiments with confocal microscopy showed that the puncta composing of coalesced cytochrome c signal and mitochondria marker were more apparent in HepG2 cells with increasing EMMQ concentrations (Fig. 4E). The results altogether proved that EMMQ induced release of cytochrome c into cytosol following DNA damage in HepG2 cells.

Apoptosis by activating the intrinsic pathway. To prove that DNA damage contributed to apoptosis, protein lysates of the cells were subjected to western blot analysis. The increased concentrations of EMMQ activated p53 after 48 h. In addition, levels of Akt, p-AktS473, Bcl-2 and procaspase-3 were reduced; while those of Bax, cytochrome c, cleaved caspase-3 and fragmented poly(ADP ribose) polymerase (PARP) became apparent in HepG2 cells (Fig. 5A). On the other hand, when
incubated with 5 µM of EMMQ, time-dependent p53 activation, procaspase-3 dissipation, caspase-3 development plus PARP cleavage in HepG2 cells indicated temporal progression of apoptotic cell death. Furthermore, the increased Bax and cytochrome c plus the reduced Bcl-2 suggested that the developed apoptosis is related to mitochondria dysfunction; whereas both Hep3B and Huh7 cells were unaffected (Fig. 5B). The results implied that EMMQ-induced apoptosis was attributed
to p53 activation following DNA damage and the subsequent mitochondria impairment.

Downregulated p53 abolishes EMMQ-induced cell death. To assure that p53 was crucial in modulating cell death, experiments by transfecting shRNA targeting exon 7 of p53 to cells before drug treatment were performed along with those of non-specific shRNA (NS) control. The resultant cell viabilities were unaffected by EMMQ in HepG2 cells, indicating that p53 shRNA eliminated drug sensitivity relative to cells introduced with NS control (Fig. 6A). The suppressed sub-G1 cells (Fig. 6B) and the restrained early and late phase populations as measured by PI and Annexin V double staining flow cytometry (Fig. 6C) suggested drug sensitivity was reduced as a result. The diminished DNA lesions in HepG2 cells transfected with p53 shRNA indicated that knocking down p53 impeded EMMQ-mediated DNA damage (Fig. 6D and E). Western blot analysis showed that cells transfected with p53 shRNA not only blocked p53 activation, but attenuated cleavage of PARP and procaspase-3, inhibited caspase-3 fragmentation, reduced expression of Bax, deterred mitochondrial cytochrome c release and γ-H2AX enhancement, while pro-survival genes Bcl-2 and Akt were unchanged (Fig. 6F). Taken altogether, the results proved that p53 shRNA stalled the apoptotic cell death in HCC cells through mitigating DNA damage and restoring mitochondrial integrity and the status of p53 determines the effectiveness of EMMQ.

Discussion

HCC is among the most common malignancies and the second most frequent cause of cancer death (1). The highly aggressive tumor responds poorly to common therapies (9). Several early trials were evaluated by targeting therapy. Among them, the approved drug sorafenib for advanced HCC suppressed tumor growth by inhibiting kinases in the MAPK pathway, inducing autophagy, suppressing tumor cell proliferation and promoting apoptosis (10). Another approved drug sunitinib for treatment is a multi-targeted receptor tyrosine kinase inhibitor. The drug blocks the tyrosine kinase activities of KIT, PDGFR, VEGFR2 and other tyrosine kinases during tumor development (11). Most traditional chemotherapy exhibited low response rate in curing HCC (12). Thus, more new effective and well-tolerated therapy strategies are needed. This study showed that EMMQ suppressed the growth of HCC cells, while normal hepatic cells remained unaffected. The cell death as activated began with DNA damage. The reduced growth can be attributed to apoptotic cell death (Fig. 2A-C).

The cell death as activated by EMMQ began with DNA damage. Response to the damaged DNA included accumulated cellular processes, such as recognition, damage signal amplification, cell cycle control, DNA repair and apoptosis. Many anticancer drugs induced cell apoptosis by activating p53 when encountering DNA damage (13). As DNA integrity was severed, γ-H2AX facilitates phosphorylation of histone by interacting with p53. Thus, the double-strained DNA damage marker γ-H2AX is crucial in the repair process (14) and final apoptosis (15). The increased DNA lesion by EMMQ began as early as 3 h in HepG2 cells. The increased drug concentrations augmented temporal development of detrimental effects (Fig. 3A-D) and activated p53 (Fig. 5B). As an index of DNA damage, γ-H2AX motivation that emerged at 3 h (Fig. 3E) acts together with p53 in response to DNA damage (16) and arrests cells at G1 phase by inhibiting synthesis of cyclin-dependent kinases (17). In response to DNA damage, p53 acts as a sequence-specific transcription factor that orchestrates the appropriate cellular response by inducing cell cycle arrest and apoptosis (18,19). The study showed that, as EMMQ damaged DNA in HepG2 cells, p53 intensities and PARP cleavage were augmented by the increased EMMQ concentrations, while both cyclin D1 and CDK2 levels were decreased. The data were consistent with the result that EMMQ arrested cell growth by holding the cell cycle at the G0/G1 checkpoint when encountering DNA damage after 24 h (Fig. 2E).

The results further suggested that the accumulated DNA lesion attenuated ΔΨm and produced ROS. The observation asserted that damaged DNA in HepG2 cells further injured mitochondria integrities. Cytochrome c as appeared in cytosol (Fig. 4D) and released from mitochondria (Fig. 4E) implied progressive impairment of mitochondrial functions. By forming complexes with members of Bel-2 family, p53 interrupted mitochondrial outer membrane entirety (20). The previous report (8) showed that EMMQ directly induced dysfunction of mitochondrial by releasing cytochrome c into cytosol before apoptotic cell death in NSCLC cells. In the case of HepG2 cells, the released cytosolic cytochrome c from mitochondria occurred following DNA damage after 24 h-treatment. The present study demonstrated that EMMQ-induced apoptosis in liver cancer began with DNA damage prior to ΔΨm attenuation, ROS production and release of mitochondrial cytochrome c.

Similar small quinoline molecules were reported effective in restraining the growth of cancer cells. A previous study showed that the IC_{50} value of 6-methoxy-8-(2-furanylmethyl) amino]-4-methyl-5-(3-trifluoromethylphenyl)oxoquinoline is 16±3 nM in inhibiting breast cancer cells (21). Another similar
compound, PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenoxo)quinoline induced apoptosis in T47D breast cancer cells (22). PQ15, 6-methoxy-4-methyl-8-[(4-quinolinylmethyl)amino]-5-(3-trifluoromethyl phenoxo)-quinoline affected viability of T47D breast cancer cells (23). Treatment with combined indole-3-carbinol and genistein induced apoptosis in human colon cancer HT-29 cells (24). Indolylquinoline derivatives are mostly used to treat leishmaniasis (25,26). The present study provided a different aspect of indolylquinoline EMMQ for human HCC treatment, in which the damaging nucleus directly activated p53 and produced ROS that mediated final apoptotic cell death. As a DNA-binding transcriptional regulator, p53 contributes to cell cycle arrest and apoptosis (27) by activating downstream elements to stall growth or promote cell death during genotoxic stress (28-30). More reports showed that ROS induces apoptosis by inducing mitogen-activated protein kinases (MAPks) (31) and the increased ROS is associated with p53 activation (32,33). The attenuated ΔΨm, diminished outer membrane regulator Bcl-2 and release of downstream modulator mitochondrial cytochrome c were attributed to outer mitochondrial membrane permeabilization (34,35). There were reports that Akt, Bcl-2 and Bax modulation were associated with activated p53 (36-38). The present study showed that EMMQ induced apoptosis in liver cancer cells through p53 activation, Akt downregulation, Bcl-2 reduction and caspase-3 fragmentation. Knocking down p53 suppressed the drug effects by mitigating DNA damage and preserving mitochondrial integrity. Whether EMMQ is effective to treat other types of cancer or those that metastasize to distant sites remains to be seen.

In conclusion, the indolylquinoline derivative EMMQ injured DNA first in liver cancer cells that differed from previous findings in NSCLC cells. The damaged DNA suppressed ΔΨm before apoptosis in human HCC cells carrying p53. The injured DNA activated p53 and increased expression of γ-H2AX, while the decreased cyclin D1 and CDK2 arrested cells at G1/G0 phase. The subsequent attenuated pro-survival signal Akt, decreased Bcl-2/Bax ratio, released mitochondrial cytochrome c, cleavage of both procaspase-3 and PARP accelerated apoptotic cell death in HepG2 cells (Fig. 7). Attenuation of p53 inhibited drug sensitivity. The study asserted the role of EMMQ as a potential candidate to treat a subset of liver cancer.

Acknowledgements

The present study was supported by grants from the Ministry of Science and Technology, Executive Yuan, ROC (MOST 103-2311-B-003-001) and the National Taiwan Normal University (102T3040B2, 103T3040D2 and 104T3040C2). We would like to thank the College of Life Science and Instrumentation Center, National Taiwan University for their technical assistance of the confocal laser microscopy.

References

