High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin

KENTARO JINGUSHI1, YURI KASHIWAGI1, YUKO UEDA1, KAORI KITAE1, HIROAKI HASE1, WATARU NAKATA2, KAZUTOSHI FUJITA2, MOTOHIDE UEMURA2, NORIO NONOMURA2 and KAZUTAKE TSUJIKAWA1

1Laboratory of Molecular and Cellular Physiology, Graduate school of Pharmaceutical sciences, Osaka University; 2Department of Urology, Graduate school of Medicine, Osaka University, Suita, Osaka 565-0871, Japan

Received February 13, 2017; Accepted March 29, 2017
DOI: 10.3892/ijo.2017.4016

Abstract. Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. Although several studies have reported high expression of miR-122 in ccRCC, its physiological role remains unclear. To clarify the role of miR-122 in ccRCC, we compared miR-122 expression levels in non-cancerous tissue and ccRCC. Significant upregulation of miR-122 was observed in ccRCC specimens. Moreover, ccRCC patients with high miR-122 expression showed poor progression-free survival compared to those with low miR-122 expression. Overexpression of miR-122 using an miRNA mimic promoted proliferation, migration, and invasion activities of ccRCC cells. miR-122 directly targets occludin, a known component of tight junctions. Occludin knockdown promoted the cell migration activity but not proliferation or invasion activities of ccRCC cells. In human clinical specimens, miR-122 expression inversely correlated with occludin protein expression. These findings show that miR-122 is an oncomiR in ccRCC.

Introduction

Renal cell carcinoma (RCC) represents the leading cause of death due to urological malignancies (1) and clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of RCC. Despite improvements in available treatments, the prognosis remains poor for locally advanced and metastatic ccRCC (2). Therefore, understanding the molecular basis of ccRCC is crucial to design a novel therapeutic drug that will improve survival rate.

MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression, mainly at the translational level (3). Anomalous changes in miRNA expression have been shown to be associated with several human cancers including ccRCC (4-6). Various studies have reported the miRNA profile in ccRCC specimens using microarray and RNA sequencing technologies (7-11). Although altered miRNA expression has been reported in ccRCC, the mechanisms through which miRNAs contribute to ccRCC pathogenesis remain poorly understood.

MicroRNA-122 (miR-122), a known tumour suppressor in hepatocellular carcinoma (HCC), functions by targeting oncogenes such as cyclin G1 (12), CDK4 (13), and AKT3 (14). However, several studies have also shown that miR-122 is highly expressed in ccRCC (10,15,16), suggesting that miR-122 functions as an onco-miRNA (oncomiR) in renal cancer (17,18). Whilst the physiological role of miR-122 in cancer appears dependent on cancer types, the precise mechanism of miR-122 on ccRCC progression is largely unknown.

Tight junctions govern the permeability of epithelial and endothelial cells and are the most topical structure of these cell types (19-21). It is thought that the interaction with and penetration of the endothelium by cancer cells is a key step in the formation of metastasis (22-24). Occludin, a component of tight junctions, possesses four transmembrane domains, two extracellular loops and two intracellular domains (25). Numerous studies have emphasized the important role of occludin in the assembly and maintenance of tight junctions (26-28). Moreover, several studies suggest that occludin also plays a tumour suppressor role. Raf-1 disrupts tight junctions through the downregulation of occludin, and overexpression of occludin suppresses Raf-1-induced tumour growth in rat salivary gland epithelial cells (29). Occludin has also been shown to regulate oncogenic properties in several cancers (30-34). In ccRCC, loss of function of von Hippel-Lindau (VHL), a tumour suppressor gene, is known to downregulate the expression of occludin and lead to disruption of tight junction assembly (35).
Herein, we showed that highly expressed miR-122 correlated with low progression-free survival compared to low miR-122 expression in ccRCC clinical specimens. We further demonstrated that miR-122 promoted malignant phenotypes partially via targeting occludin in ccRCC cells. Finally, we showed that occludin was significantly downregulated in ccRCC specimens compared to normal kidney tissues, and this correlated with the expression levels of miR-122. Our findings identify that miR-122 is as a potent regulator of malignant phenotypes and functions as an oncomiR in ccRCC, leading to a novel therapeutic strategy for treatment of ccRCC.

Materials and methods

Chemicals and antibodies. miRIDIAN miRNA hairpin inhibitor negative control, miRIDIAN miRNA mimic negative control, miRIDIAN hairpin inhibitor or miRIDIAN miRNA mimic for human hsa-miR-122 (MIMAT0000421) were purchased from Thermo Scientific Dharmacon (Waltham, MA, USA). The miRIDIAN hairpin inhibitors and mimics were used at a concentration of 50 nM. Polyclonal anti-occludin and monoclonal anti-β-tubulin antibodies were purchased from Sigma (St. Louis, MO, USA). Polyclonal Anti-ACTIVE p38 (Thr180/Tyr182) and Anti-ACTIVE JNK1/2 (Thr183/Tyr185) antibodies were purchased from Promega (Madison, WI, USA). Monoclonal anti-phospho-Erk1/2 (Thr202/Tyr204), anti-Erk1/2, and anti-p38 antibodies were purchased from Cell signaling Technology (Beverly, MA, USA). Monoclonal anti-JNK1/2 antibody was purchased from BD Transduction Laboratories (San Jose, CA, USA).

Clinical specimens. ccRCC specimens were obtained from patients who underwent primary curative resection at the Osaka University Medical Hospital, Japan. Tumour-associated normal renal tissue was also obtained from a subset of these patients when possible. Prior written and informed consent was obtained from each patient, and the study was approved by the ethics review board of the Osaka University Medical Hospital and the methods were carried out in accordance with the approved guidelines.

Quantitative real-time PCR. Following excision, tissue samples were immediately immersed in RNAlater (Qiagen, Valencia, CA, USA) and stored at -20°C until RNA extraction. miRNAs were purified using the miRNeasy mini kit (Qiagen). Real-time PCR analysis was conducted to validate miR-122 expression in ccRCC using 80 tumour samples and 10 adjacent normal renal samples (for Fig. 1B-D) and another distinct 122 tumour tissue samples (for Fig. 1E and F) using the Mir-X miRNA first-strand synthesis kit (Takara, Shiga, Japan). Thermal cycling conditions included an initial step at 98°C for 30 sec, and 40 cycles at 95°C for 2 sec and 66°C for 5 sec using an miR-122 specific primer (5'-tggagtgtgacaatggtgtttg-3'), and 98°C for 30 sec, and 40 cycles at 95°C for 2 sec and at 63°C for 5 sec by using an U6 snRNA primer (Takara). Clinical and pathological data related to the clinical samples are presented in Table I.

Cell culture. Three human ccRCC cell lines (Caki-1, Caki-2 and, ACHN), obtained from the American Type Culture Collection (ATCC), were cultured in RPMI-1640 medium (Wako, Osaka, Japan) supplemented with 10% fetal bovine serum, 100 U/ml penicillin G, and 0.1 µg/ml streptomycin.

Western blotting. Protein samples were separated by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) on a 7.5-15% SDS-polyacrylamide gel and then transferred to a polyvinylidene difluoride membrane using the Bio-Rad semi-dry transfer system (1 h, 12 V). Immunoreactive proteins reacting with the antibodies described above were visualized by treatment with a detection reagent (ECL Prime western blotting detection reagent; GE Healthcare, Lafayette, CO, USA). Densitometric analysis was performed using NIH ImageJ software.

Luciferase reporter assay. A pmirGLO dual-luciferase miRNA target expression vector was used for the 3'-UTR luciferase reporter assay (Promega). The following oligonucleotides were used for the evaluation of efficacy of the miR-122 hairpin inhibitor on occludin 3'-UTR: 5'-CTA GCG GCC GCT AGT TCA ACT GGG CTG AAC ACT CCA G-3' and 5'-TCG ACT GGA GTG TTC AGC CTA GTT GAA CTA GCG GCC GCT AGA GCT 3'. Luciferase activity was determined using a luminometer (Turner Biosystems 20/20 n luminometer, Promega).

Wound healing assay. Cell migration was examined by wound healing assay. In brief, Caki-2 cells transfected with

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Validation cohort for miR-122 expression</th>
<th>For the PFS analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>Mean 62.6</td>
<td>63.8</td>
</tr>
<tr>
<td></td>
<td>Range 35-86</td>
<td>34-82</td>
</tr>
<tr>
<td>Gender</td>
<td>Male 58</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Female 31</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Unknown 1</td>
<td>1</td>
</tr>
<tr>
<td>Pathologic stage</td>
<td>Normal 10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>pT1a 11</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>pT1b 69</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Unknown 0</td>
<td>1</td>
</tr>
<tr>
<td>Pathologic grade</td>
<td>G1 23</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>G2 52</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>G3 5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Unknown 0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphatic invasion</td>
<td>- 74</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>+ 6</td>
<td>10</td>
</tr>
</tbody>
</table>

Table I. Clinical and pathological data related to the clinical samples.
the miRIDIAN hairpin inhibitor or the negative control inhibitor, and ACHN cells transfected with the miRIDIAN microRNA mimic or the negative control mimic were seeded in a 24-well plate (Caki-2 cells: 2.0x10^4 cells/well, ACHN cells: 4.0x10^4 cells/well) and incubated for 72 h. A wound was created in a monolayer of approximately 90% confluent Caki-2 or ACHN cells using a sterile 1 ml pipette tip. Cell migration pictures were recorded at 0 and 12 h after wound creation using an Olympus IX71 fluorescence microscope.

Water-soluble tetrazolium salt-1 (WST-1) cell proliferation assay. Cell proliferation was examined by WST-1 assay. Caki-2 cells transfected with the miRIDIAN hairpin inhibitor or the negative control inhibitor, and ACHN cells transfected with the miRIDIAN microRNA mimic or the negative control mimic were seeded in a 24-well plate (Caki-2 cells: 2.0x10^4 cells/well, ACHN cells: 4.0x10^4 cells/well) and incubated for 72 h. A wound was created in a monolayer of approximately 90% confluent Caki-2 or ACHN cells using a sterile 1 ml pipette tip. Cell migration pictures were recorded at 0 and 12 h after wound creation using an Olympus IX71 fluorescence microscope.

Soft agar colony formation assay. Caki-2 or ACHN cells were seeded at 1.0x10^4 cells/well in 6-well plates in RPMI-1640 medium (supplemented with 10% FBS and 0.3% agarose with 0.4% agarose underlay). Dishes were incubated at 37°C and 5% CO2. After 14 days, colonies were stained with crystal violet (Wako) and counted.

Cell invasion assay. The BioCoat tumour invasion system (Corning Inc., Corning, NY, USA) was used to perform the cell invasion assay. Caki-2 cells transfected with the miRIDIAN hairpin inhibitor or the negative control inhibitor were seeded in a 96-well plate (3x10^4 cells/well). Following incubation for 12 h, the cells were labelled with calcein AM (4 μg/ml, reagent (Dojindo, Osaka, Japan) at 37°C and 5% CO2, the optical density was read at a wavelength of 450/630 nm (Ex/Em).
Takara), and the fluorescence of the invaded cells was read at a wavelength of 494/517 nm (Ex/Em).

Fluorescence microscopy. Cells plated on coverslips were washed with phosphate-buffered saline (PBS). The cells were fixed and permeabilized in 4% formaldehyde for 15 min at room temperature and then washed twice with PBS. After blocking with 2% bovine serum albumin in PBS for 1 h, the coverslips were incubated with the anti-occludin antibody (1:500) at 4˚C. The coverslips were washed twice with PBS and incubated with the fluorochrome-conjugated secondary antibody for 1 h at room temperature. The cells were then examined under the fluorescence microscope, Bio-Zero (Keyence, Osaka, Japan).

Immunohistochemistry. The expression of occludin was determined by immunohistochemical staining of paraffin-embedded tissues of ccRCC samples with the highest and lowest levels of miR-122 expression samples (10 samples of each). Formalin-fixed paraffin-embedded sections (5 μm in thickness) were deparaffinized and rehydrated. After the slides were steamed for 20 min in 10 mM citrate buffer (pH 6.0) for antigen retrieval, endogenous peroxidase was blocked using 3% H₂O₂. Immunohistochemical staining for occludin was performed using anti-occludin (1:500) and the EnVision® Detection System (Dako, Santa Clara, CA, USA) was used according to the manufacturer's instructions. Primary antibodies were incubated overnight at 4˚C and counterstained with hematoxylin. The levels of occludin staining were classified into four groups according to the staining intensity of the positive cells (staining score, 0-3; Fig. 5F) and Quick score was calculated as follows; Quick score = (percentage of occludin positive cells) x (staining score). For each ccRCC sample, three points were calculated.

Transendothelial electrical resistance (TEER) measurement. ACHN cells transfected with occludin siRNAs or miR-122 mimic for 48 h were reseeded (1.0x10⁵ cells/well) on a 0.4 µm pore size 24-well cell culture insert (Thermo Scientific Dharmacon) and incubated for 1 day. TEER was measured using a Millicell® ERS-2 voltohmmeter (Millipore, Billerica, MA, USA). TEER was calculated as follows: (sample well Ω - empty well Ω x (cultured area cm²)) = TEER (Ω cm²).

Statistics. The results are expressed as the mean ± standard deviation (SD). Differences between the values were statistically analysed using the Student's t-test or one-way analysis of variance (ANOVA) with Bonferroni post-hoc tests. Correlations between the values were analysed using Pearson correlation analysis (GraphPad Prism 6.0, GraphPad software, San Diego, CA, USA). A P-value of <0.05 was considered statistically significant.

Results

High miR-122 expression correlates with poor progression-free survival in ccRCC. In our previous microarray analysis
miR-122 inhibitor reduced migration and invasion activities of Caki-2 cells. To investigate the role of miR-122 in ccRCC, we first compared the expression levels of miR-122 in three ccRCC cell lines (Caki-1, Caki-2, and ACHN, Fig. 2A). Since the expression of miR-122 was highest in Caki-2 cells, we first analysed the function of miR-122 using Caki-2 cells. To investigate the function of miR-122, we examined the effect of a miR-122 inhibitor on growth, migration, and invasion in Caki-2 cells. Although the miR-122 inhibitor had no significant effect on the cell growth (Fig. 2B and C), migration and invasion activities were significantly reduced in Caki-2 cells (Fig. 2D and E). Of the cell lines examined, ACHN cells had the lowest miR-122 expression. Using a miR-122 mimic in ACHN cells, we observed upregulated proliferation (Fig. 3A and B), migration (Fig. 3C), and invasion activities (Fig. 3D). These results suggest that miR-122 is involved in regulating the expression of crucial molecule/s in ccRCC cells.

miR-122 regulates occludin expression in ccRCC cells. We used target prediction programs (miRBase, TargetScan, and miRanda) to identify the potential miR-122 target in ccRCC cells. We then focused on occludin as a potential target, because it is a component of tight junctions and functions as a tumour suppressor in several cancers (30,31). TargetScan predicts that the 3'-untranslated region (UTR) of occludin mRNA contains a complementary site for the seed region of miR-122 (Fig. 4A). To confirm whether or not occludin is a direct target of miR-122, the miR-122 inhibitor and a luciferase reporter plasmid containing the predicted miR-122 binding site (within the 3'-UTR of the human occludin gene) were co-transfection into Caki-2 cells. Luciferase activity confirmed that the reporter construct was working appropriately (Fig. 4B). The luciferase activity in cells co-transfected with the miR-122 inhibitor increased significantly compared to those co-transfected with the negative control inhibitor. Conversely, compared to the negative control mimic, the miR-122 mimic significantly decreased the luciferase activity (Fig. 4C). Moreover, the miR-122 inhibitor upregulated the expression of occludin protein in Caki-2 cells (Fig. 4D), and the miR-122 mimic reduced occludin protein expression in ACHN cells (Fig. 4E). These results indicated that occludin is a direct target of miR-122 in ccRCC cells.

Occludin knockdown upregulates cell migration activity in ACHN cells. To examine whether the malignant phenotypes upregulated by the miR-122 mimic in ccRCC cells were due to the decrease in occludin expression, we performed occludin knockdown experiments in ACHN cells (Fig. 5A and B). Occludin knockdown upregulated the migration activity of ACHN cells. The motility of ACHN cells was upregulated by occludin knockdown. Transepithelial electrical resistance (TEER) analysis showed that miR-122 mimic and occludin knockdown downregulated the TEER in the cells (Fig. 5C and D). TEER is a quantitative method to measure the integrity of tight junctions in cultured cells. These results suggest that miR-122 might upregulate the permeability of tight junctions via occludin reduction, leading to an increase in the motility of ACHN cells.

miR-122 expression and occludin protein expression have an inverse correlation in ccRCC specimens. The miR-122 inhibitor upregulated the expression of occludin at the cell-cell adhesive

Figure 3. miR-122 mimic upregulates growth and migration activities in ACHN cells. (A) ACHN cells transfected with the miR-122 mimic, or the negative control miRNA mimic, for 24 h were reseed in a 96-well plate (0.3x10^3 cells/well), incubated for the indicated times and examined by Wst-1 assay. Values are means ± SD of six independent experiments. ***p<0.001 vs. the control mimic. (B-D) ACHN cells were transfected with the miR-122 mimic, or the negative control miRNA mimic, for 72 h. (B) The transfected cell suspension was added to soft agar plates and cultured for 2 weeks, and then the colony number was counted. The results are expressed as mean ± SD of three independent experiments. *p<0.05 vs. the control mimic. (C) Cell migration was measured 12 h after a wound was created by scratching. The results are expressed as mean ± SD of six independent experiments. **p<0.01 vs. control mimic. (D) The transfected cell suspension was added to the upper chamber of matrigel-coated Transwell membrane inserts, and the lower chamber was filled with the medium and then cultured for 12 h. Fluorescence derived from invasive cells was measured. Values are mean ± SD of three independent experiments.
miR-122 promotes MAPK signaling in ccRCC cell lines. Although the miR-122 mimic upregulated the cell proliferation, motility, and invasion activities, occludin knockdown only upregulated cell motility. Target prediction programs predict that putative miR-122 binding sequences exist in other genes involved in cell growth [e.g., p27 (36), PHD3 (37,38), and DUSP2 (39)] and invasion [e.g., CPEB1 (40), FOXP2 (41), and SOX17 (42)]. Occludin is known to mediate the MAPK signaling pathway via oncogenic proteins such as Raf (29). Therefore, we examined the effect of miR-122 on the MAPK pathway by miR-122 overexpression and loss of function experiments. We found that miR-122 affected the phosphorylation status of Erk1/2 and p38 (Fig. 6A). Likewise, occludin knockdown upregulated the phosphorylation status of Erk1/2 (Fig. 6B). Therefore, miR-122 might also mediate ccRCC cell growth and invasion via occludin and other target molecules including MAPK signaling components.
Discussion

In the present study, we found that high expression of miR-122 was significantly correlated with poor progression-free survival in ccRCC. Overexpression and loss of function experiments revealed that miR-122 functions as an oncomiR by upregulating malignant phenotypes in ccRCC cells. We identified that miR-122 directly targets occludin in ccRCC cells. Moreover, we showed that the miR-122 expression levels and occludin protein levels are negatively correlated in ccRCC clinical specimens.

Although miR-122 mimic significantly downregulated the TEER in ACHN cells, occludin knockdown only slightly suppressed the TEER (Fig. 5D). Claudin1 and PVRL1, which
play roles in the organization of adherence junctions and tight junctions (43,44), respectively, also have potential miR-122 binding sites within their 3’UTRs. Therefore, miR-122 might upregulate cell motility of these proteins as well as occludin in ccRCC cells.

Although miR-122 expression was not correlated with pathological stages and grades, miR-122 expression was significantly high in ccRCC tissues accompanied by lymphatic invasion (Fig. 1E). Lymphovascular invasion correlates with adverse outcome in several malignancies (45-47). In ccRCC, lymphovascular invasion is associated with metastasis-free survival, disease-specific survival, and overall survival (48,49). While the precise mechanism needs to be investigated further, high miR-122 expression might lead to increased lymphovascular invasion via upregulated cell motility and invasion activities, leading to a poorer prognosis for ccRCC patients.

Originally miR-122 was reported as a tumour suppressor gene in hepatocellular carcinoma (HCC) (12-14). However, in breast cancer, miR-122 has been reported as a tumour suppressor targeting insulin-like growth factor 1 receptor (IGF1R) (50), and as an oncomiR by reprogramming the glucose metabolism in the tumour microenvironment via the exosome (18). The present study demonstrates for the first time that, unlike that in HCC or breast cancer, miR-122 functions as an oncomiR in ccRCC in both cell lines and clinical specimens. Lian et al showed that miR-122 expression led to upregulated cancer cell malignancy phenotypes in RCC (17), consistent with our present study in ccRCC. Phase II clinical study of miR-122-targeted locked nucleic acid (LNA), miravirsen, inhibits viral proliferation, resulting in a long-lasting antiviral effect against HCV without evidence of viral resistance (51). Therefore, a miR-122-targeted bridged nucleic acid might be a promising molecular-targeted drug for the treatment of ccRCC.

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (25670025) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by Project MEET, Osaka University Graduate School of Medicine. The TEER measurement with the Millicell® ERS-2 voltohmmeter was kindly supported by Dr Takefumi Doi and Dr Yoshiaki Okada (Graduate School of Pharmaceutical Sciences, Osaka University). N. Nonomura received commercial research grants from Takeda Pharmaceutical, Novartis Pharma, and Astra Zeneca.

References

