Abstract. T-cell lymphoblastic lymphoma (T-LBL) is an aggressive malignancy with poor prognosis and high recurrence rate. Long non-coding RNA (lncRNA)-MEG3 is an important tumor suppressor in various cancers. The present study investigated the potential role of maternally expressed gene 3 (MEG3) in the progression of T-LBL. Suppressed expression of MEG3 was detected in T-LBL tissues compared with adjacent histologically normal tissues. Down-regulated level of MEG3 was also found in three T-LBL cell lines (CCRF-CEM, Jurkat and SUP-T1) compared with human T-cell line H9. The proliferation of T-LBL cells was inhibited and cell apoptosis rate was largely promoted when MEG3 was upregulated by a lentiviral vector. Further research revealed that microRNA (miRNA)-214 is a direct target of MEG3. The expression of miR-214 was increased in T-LBL tissues and cell lines compared with control groups. Besides, decreased level of miR-214 was elevated adding miR-214 mimic in SUP-T1 cells transfected with LncRNA-MEG3. Similarly, upregulated level of miR-214 was downregulated adding miR-214 inhibitor in SUP-T1 cells transfected with MEG3 siRNA. Luciferase activity assay further confirmed the targeting relationship between MEG3 and miR-214. Moreover, AIFM2 protein was predicted as a target of miR-214. The expression of AIFM2 was increased by MEG3 and was downregulated by miR-214 mimic. miRNA-214 reversed the effect of MEG3 on inhibiting cell proliferation and inducing cell apoptosis and cell cycle arrest in SUP-T1 cells. Moreover, relative expression of AIFM2 had a positive correlation with the expression of MEG3 and was negatively affected by miR-214. In vivo, MEG3 effectively suppressed tumor growth and the expression of proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA). Taken together, our research revealed that MEG3 worked as an anti-oncogene in T-LBL, and the MEG3-miR-214-AIFM2 pathway regulated the growth of T-LBL, providing potential prognosis markers as well as new potential targets for T-LBL treatment.

Introduction

Lymphoblastic lymphoma (LBL) is a rare and aggressive malignancy composed of immature B cells belonging to the B-cell lineage (B-LBL) or T-cell lineage (T-LBL) comprised of immature T cells. LBL accounts for ~1-2% of non-Hodgkin lymphomas (NHL) worldwide, characterized by lymph node enlargement, pleural effusion and mediastinal adenopathy (1). T-LBL, also called a precursor T-cell lymphoblastic lymphoma/leukemia, comprising ~80-90% of all LBL (2,3). T-LBL is typically seen in childhood and young adulthood (average age of onset is 24.5) and affects two to three times as many men as women (4). High recurrence rate in clinic is still a difficult problem due to lack of effective prognostic markers (5). Thus, it is urgent to explore and validate the pathogenesis of T-LBL for more powerful therapeutic methods.

Long non-coding RNAs (lncRNAs), with size larger than 200 nt, are a novel class of RNAs regulating multiple biological functions but seldom encoding proteins (6,7). Maternally expressed gene 3 (MEG3), which is an imprinted gene located on chromosome 14q32, has been identified as an important tumor suppressor in various cancers (8,9). Identification of its biological roles is of importance for better understanding the processes of tumorigenesis. A previous study found that MEG3 played regulating role in carcinogenesis and cancer metastasis by interacting with microRNAs, such as miRNA-141 (10), miRNA-148a (11) and miRNA-29 (12) in some cancers. MEG3 was also found...
involved in large B-cell lymphoma (13) and lymphoblastic leukemia (14). However, to date, the regulation mechanism of MEG3 in T-LBL has not been explained clearly.

MicroRNAs (miRNAs or miRs) have been demonstrated as oncogenes or anti-oncogenes to participate in cell differentiation, proliferation and apoptosis by binding to the 3'-untranslated regions (UTR) of messenger RNA, thus, influencing the occurrence and development of tumors and other diseases (15-17). Emerging evidence suggests that miR-214 is often dysregulated during the development and progression in kinds of human cancers, such as breast (18), non-small cell lung cancer (19), including leukemia and lymphoma (20). In a previous investigation, at least two binding sites between MEG3 and miR-214 were found in ovarian cancer (21). In other words, miR-214 has been regarded as a potential biomarker and therapeutic for different cancers, but how it works in T-LBL is still elusive.

Apoptosis inducing factor (AIF), is a caspase-independent oxidoreductase located within the mitochondrial membrane (22). Once activated, AIF causes chromosome condensation and large-scale DNA fragmentation through trans-locating from the mitochondria to the nucleus, thus, inducing nuclear apoptosis (23,24). Apoptosis-inducing factor, mitochondrion-associated 2 (AIFM2), a homologue of AIF, have been proved to induce apoptosis in cancers. For example, activated AIFM2 enhanced apoptosis of human lung cancer cells undergoing toxicological stress (25). Down-regulated expression of AIFM2 was detected in various cancers, including in pediatric acute myeloid leukemia, indicating an anticancer effect (26,27).

In the present study, we explored the mechanism of MEG3 in the proliferation of T-cell lymphoblastic lymphoma. MEG3 was found downregulated in T-LBL tissues and cell lines. Elevated MEG3 by exogenous recombinant vector suppressed cell proliferation in vivo and in vitro and induced cell apoptosis. Thus, miR-214 was predicted a target of LncRNA-MEG3, and MEG3 may ameliorate T-LBL through upregulating the expression of AIFM2 by targeting miR-214. The inhibitory effect of MEG3/miR-214/AIFM2 pathway in the proliferation of T-LBT may pave the way for therapeutic targets for T-LBL treatment.

Materials and methods

Sample collection. A total of 50 pairs of human T-LBL tissues and 38 pairs of adjacent normal tissues were surgically collected from patients in Chengdu Military General Hospital of PLA. The specimens were collected and rapidly frozen in liquid nitrogen and stored at -80°C until use. The study was approved by the Human Ethics Committee/Institutional Review Board of Chengdu Military General Hospital of PLA and was fully informed consent was obtained from all the patients before the sample collection.

Cell lines. The T-LBL cell lines (CCRF-CEM, Jurkat and SUP-T1) and human T-cell line H9 were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). All the cell lines were cultured in RPMI-1640 media, (cat. no. 11875-093; Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; Life Technologies, Inc., Grand Island, NY, USA). The cells were grown in humidified air at 37°C with 5% CO₂.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Total RNA from related tissues and cell lines was harvested using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and was reverse transcribed using RT-PCR kits (Applied Biosystems, Foster City, CA, USA) with an oligo d(T) according to the manufacturer's protocol. The RT-PCR primers for MEG3 and miR-214 were purchased from GeneCopoeia, Inc. (San Diego, CA, USA). The specific primers were as follows: MEG3 (forward, 5’-CCTGCTGCCCATCTACACCTC-3’ and reverse, 5’-CCTCTTCACTTGTGCTCCTTG-3’); miR-214 (forward, 5’-AGCATAATTACGGCGAGGCA-3’ and reverse, 5’-AAGGTTGTCTTCACTCTCTCA-3’). GAPDH was used as the internal control of the mRNA or miRNA, respectively. Fold-change of MEG3 or miR-214 was calculated by the equation 2^ΔΔCt.

Cell transfection. Mimics/inhibitors specific for miR-214 and LncRNA-MEG3 were designed and purchased from Invitrogen. The mock and fragments were designed as the negative control of miR-214 and UCA1, respectively. The Jurkat and SUP-T1 cells were seeded in 24-well plates at 1x10⁵ cells/well. LncRNA-MEG3 and MEG3 scramble was amplified using PrimerSTAR premix (Takara) and cloned into lentivirus plasmid according to the manufacturer's protocol. Jurkat and SUP-T1 cells were transfected with recombinant lentivirus. Mimics/inhibitors specific for miR-214 and mock were transfected into Jurkat and SUP-T1 cells using Lipofectamine 2000 (Invitrogen). Cells were harvested for subsequent experiments after transfection for 24 h.

Cell proliferation assay. Cell proliferation was assayed using the Cell Counting kit-8 (CCK-8; Dojindo Laboratories, Tokyo, Japan) according to the manufacturer's protocol. Firstly, Jurkat and SUP-T1 cells were pretreated with LncRNA-MEG3 or MEG3 scramble. A total of ~5x10³ Jurkat and SUP-T1 cells were seeded onto 96-well plates and were transfected with LncRNA-MEG3 or MEG3 scramble, respectively. Twenty-four hours later, cells were incubated with CCK-8 solution for 3 h at 37°C. Absorbance was determined at 570 nm using multifunctional microplate reader SpectraMax M5 (Molecular Devices, Sunnyvale, CA, USA) at indicated time-points. All experiments were repeated in triplicate. The cell proliferation trends were depicted according to the absorbance at each time-point.

Northern blot analysis. The expression levels of MEG3 and miR-214 in T-LBL samples, adjacent normal tissues, T-LBL cell lines and human T-cell lines H9 were further determined by Northern blot assay. Northern blot analysis was performed according to the previously described procedures (28).

Western blotting assays. Total protein was extracted from related tissue and cells and then protein concentrations were measured using a Bradford protein assay kit (Bio-Rad Laboratories, Hercules, CA, USA). Equivalent amounts of protein were separated by SDS-PAGE and transferred onto a PVDF membrane (Millipore, Billerica, MA, USA). The
membranes were blocked in phosphate-buffered saline (PBS) with 0.1% Tween-20 containing 5% non-fat milk for 2 h at room temperature, and then incubated with the primary antibodies: anti-Ki-67, anti-proliferating cell nuclear antigen (PCNA), anti-caspase-3, anti-caspase-9, anti-p27, anti-cyclin A, anti-AIFM2 and anti-GAPDH (Abcam, Cambridge, UK) and the corresponding HRP-conjugated secondary antibodies, followed by detection and visualization using a ChemiDoc XRS imaging system and analysis software (Bio-Rad Laboratories, San Francisco, CA, USA). GAPDH (Abcam) was used as endogenous references.

Cell apoptosis analysis. SUP-T1 cells were seeded in 6-well plates and treated with LncRNA-MEG3 or MEG3 scramble for 24 h. Cell apoptosis were detected by the Annexin V apoptosis detection kit (Beyotime Institute of Biotechnology, Shanghai, China) following a previous study (29). Cell apoptosis percentage was reflected by Annexin V/PI ratio, detected by a flow cytometry (BD Biosciences, Shanghai, China).

Cell cycle analysis. SUP-T1 cells were harvested after 24 h of treatment with LncRNA-MEG3 or MEG3 scramble, respectively. After washing with ice-cold PBS, the cells were then harvested and fixed in 70% ethanol overnight at 4°C. After that, the cells were washed with PBS, re-suspended in a staining solution containing 20 µl RNase A solution and 400 µl propidium iodide staining solution (Vazyme Biotech, Co., Ltd., Nanjing, China). Then, cell cycle distribution was assessed using a fluorescence-activated cell sorter (BD FACS Calibur). Results are presented as the percentage of cells in each phase.

Luciferase activity assay. The full-length 3'-UTR segments of MEG3 mRNA containing the miR-214 binding site was amplified by chemical synthesis and inserted into the luciferase reporter vector (pGL3) and named MEG3 WT. The mutation of MEG3 in the seed sequence was synthesized using a Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA, USA). Then, 1x10⁶ SUP-T1 cells were co-transfected with 0.1 µg Luc-MEG3-WT or Luc-MRG3-MUT, together with 40 nM miR-214 mimic/mimic control or 40 nM pGL3 for 24 h using Lipofectamine 2000. Then luciferase activity was measured using the Dual-luciferase assay system (Promega, Madison, WI, USA) and normalized to Renilla luciferase activity.

Glioma xenografts. Specific pathogen-free (SPF) athymic nude mice (male, 6 to 8 weeks of age) were housed and manipulated under the express consent of the Experimental Animal Center of Chengdu Military General Hospital of PLA. For investigating tumorigenicity of MEG3 in vivo, xenograft mouse model was created by subcutaneous injection of 1x10⁶ SUP-T1 cells transfection with LncRNA-MEG3 or MEG3 scramble to SPF nude mice. After development of a palpable tumor, the tumor volume was monitored every 5 days for a month and assessed by measuring the 2 perpendicular dimensions using a caliper and the formula (a x b²)/2, where a is the larger and b is the smaller dimension of the tumor. Then the mice were sacrificed and the tumor weights were assessed. Tumors from each mouse were randomly selected for immunohistochemical (IHC) analysis. All the animal experiments were performed according to relevant national and international guidelines and were approved by the Animal Experimental Ethical Committee.

Statistical analysis. The significance of differences between 2 groups was determined by the Student's t-test. All data were expressed as the mean ± standard deviation (SD) of at least three independent experiments performed in triplicate. All of the P-values were 2-sided and differences were considered statistically significant at P<0.05.

Results

The decreased expression of MEG3 is observed in T-LBL. To investigate the roles of MEG3 in T-LBL, the expression of MEG3 was detected in T-LBL tissues compared with adjacent non-cancer tissues. We found that the level of MEG3 was conspicuously lower in T-LBL tissues compared with normal tissues (P<0.01; Fig. 1A). Besides, the level of MEG3 was significantly decreased in T lymphocyte leukemia cell lines (CCRF-CEM, Jurkat and SUP-T1) compared with human T-cell line H9 (P<0.05, P<0.01; Fig. 1B). The expression of MEG3 in the above tissues and cell lines was confirmed by western blot analysis. As shown in Fig. 1C, the result displayed that the expression of MEG3 was strongly suppressed in T-LBL tissues compared with control groups. Similarly, an obvious downregulation of MEG3 was detected in T-LBL cell lines compared to that of T-cell line H9 (Fig. 1D). Collectively, these results suggest that the decreased expression of MEG3 may be involved in the development of T-LBL.

Overexpression of MEG3 suppresses cell growth. To better understand the functional role of MEG3 in T-LBL, we used a lentiviral vector (lv-LncRNA-MEG3) to exogenously upregulate the expression of MEG3. Two T-LBL cell lines, Jurkat and SUP-T1, were used in this experiment. Upregulation of MEG3 in Jurkat and SUP-T1 cells was verified through qRT-PCR (P<0.01; Fig. 2A). Next, CCK-8 assays were performed to detect cell proliferation. The results showed that cell proliferation was significantly inhibited in Jurkat and SUP-T1 cells after transfection with LncRNA-MEG3 lentivirus (Fig. 2B; P<0.01). The expression of proliferation marker proteins Ki-67 and PCNA was also detected. The result exhibited that the level of Ki-67 and PCNA was both restrained by LncRNA-MEG3 transfection (Fig. 2C and D; P<0.01). The results above indicate that overexpressed MEG3 suppresses cell growth in T-LBL.

Immunohistochemistry. Briefly, 5 µm-thick paraffin-embedded tumor tissue sections were deparaffinized in xylene, rehydrated in graded ethanol gradually and were rinsed twice with PBS. In order to quench the activity of the endogenous peroxidase, the tissue sections were incubated in 30% H₂O₂ for 30 min. After antigen retrieval in heated 10 mM citrate buffer for 10 min, the tissue sections were incubated with mouse anti-human Ki-67 and PCNA primary antibody overnight at 4°C. Corresponding mouse horseradish peroxidase (HRP)-conjugated secondary antibody was added for 1 h at room temperature. The images were viewed under a light microscope.
Figure 1. Decreased expression of MEG3 in T-LBL. (A) Relative expression of MEG3 was examined by qRT-PCR in T-LBL samples (n=38) and in adjacent histologically normal tissues (n=50) (**P<0.01 vs. normal tissues). (B) Relative expression of MEG3 in T-LBL cell lines (CCRF-CEM, Jurkat and SUP-T1) and human T-cell lines H9 was evaluated through qRT-PCR (**P<0.01 vs. H9). GAPDH was used as an internal control. (C) Expression of MEG3 in T-LBL tissues and normal tissues was detected through northern blotting. (D) Expression of MEG3 in related T-LBL and normal cell lines was detected through Northern blotting. GAPDH was used as an endogenous reference. The bars show means ± SD of three independent experiments.

Figure 2. Overexpression of MEG3 suppresses cell growth. Jurkat and SUP-T1 cells were transfected with lv-LncRNA-MEG3 or lv-MEG3 scramble, respectively. (A) Relative expression of MEG3 in Jurkat and SUP-T1 cells was detected through qRT-PCR (**P<0.01 vs. scramble group). (B) At the indicated time-points, the numbers of cells/well in Jurkat and SUP-T1 cells were measured through CCK-8 assay at 570 nm. The statistical results are shown in the histogram (**P<0.01 vs. scramble group). (C and E) The expression of proliferation marker proteins Ki-67 and PCNA in Jurkat (C) and SUP-T1 (E) cells was detected through western blotting. GAPDH was used as an endogenous reference. (D and F) Histograms represent the statistical analysis of western blotting (**P<0.01 vs. scramble group). The bars show means ± SD of three independent experiments.
Overexpression of MEG3 induces cell apoptosis and cell cycle arrest. Having established that overexpression of MEG3 suppressed cell growth in T-LBL, flow cytometric analysis was conducted to explore whether MEG3 has a pro-apoptosis effect on T-LBL cells. The results indicated that overexpressed MEG3 markedly promoted tumor cell apoptosis in SUP-T1 cells transfected with lv-LncRNA-MEG3 compared with the scramble group (Fig. 3A and B; P<0.01). We further analyzed the effect of MEG3 on cell cycle distribution through flow cytometry in SUP-T1 cells. In comparison with the scramble group cells, lv-LncRNA-MEG3 transfected cell induced an obvious cell cycle arrest in G2/M phase (Fig. 3C and D; P<0.01). The expression of apoptosis-related proteins (caspase-3 and caspase-9) was markedly enhanced under the treatment of LncRNA-MEG3 (Fig. 3E). Moreover, the expression of cell cycle marker protein p27 and cyclin A was detected through western blotting. Upregulated expression of p27 and decreased cyclin A in SUP-T1 cells transfected with lv-LncRNA-MEG3 further identified that overexpressed MEG3 inhibited cell proliferation (Fig. 3F). The above results demonstrate that overexpressed MEG3 induces cell apoptosis and G2/M cell cycle progression in T-LBL cell lines.

The level of miR-214 is elevated in T-LBL. Considering the effect of MEG3 overexpression in inhibiting cell viability of T-LBL, we then explored the underlying molecular mechanisms. According to bioinformatics predictions, MEG3 RNA contains the complementary sequences of miR-214 (Fig. 4A). After that, relative expression of miR-214 in T-LBL tissues and cell lines was detected through qRT-PCR and Northern blotting. As shown in Fig. 4B, relative expression of miR-214 was largely upregulated in T-LBL tissues compared with normal tissues. Similarly, remarkable difference was measured between the expression of miR-214 in T-LBL cell lines (CCRF-CEM, Jurkat and SUP-T1) and that in human T-cell lines H9 (Fig. 4C; P<0.01). Additionally, a significantly increased level of miR-214 was found in T-LBL tissues compared with the normal tissues through Northern blotting.
miR-214 is a direct target of MEG3. To further assess the potential relationship between miR-214 and MEG3, qRT-PCR and Northern blotting were conducted in SUP-T1 cells transfected with lv-LncRNA-MEG3 or lv-MEG3 siRNA in combination with miR-214 mimic/miR-214 inhibitor/miR-214 mock. As shown in Fig. 5A, the upregulated level of miR-214 in SUP-T1 cells transfected with miR-214 mimic was downregulated by co-transfection with lv-LncRNA-MEG3 (P<0.05). Similarly, the decreased level of miR-214 was elevated by adding miR-214 inhibitor in SUP-T1 cells transfected with lv-MEG3 siRNA (Fig. 5B; P<0.05). A similar result was
reflected through Northern blotting. miR-214 mimic reversed the weakening effect of LncRNA-MEG3 on the expression of miR-214 as shown in Fig. 5C. Likewise, the upgrading functions of MEG3 siRNA on the level of miR-214 was weakened by miR-214 inhibitor (Fig. 5D). In addition, the wild-type and mutant 3'-UTR of MEG3 were, respectively, cloned into the luciferase plasmid (pGL3) and co-transfected with miR-214 mimic or miR-214 inhibitor into SUP-T1 cells. The luciferase assay showed that miR-214 mimic effectively inhibited the luciferase activity of the MEG3-wT reporter but that of the MEG3-Mut reporter was unaffected, suggesting that miR-214 is a direct target gene of MEG3.

Overexpression of MEG3 upregulates AIFM2. The target sequences of miR-214 in the 3'-UTR region of AIFM2 was predicted through bioinformatics analysis (Fig. 6A). In order to further investigate the regulatory relationship between MEG3, miR-214 and AIFM2, Jurkat and SUP-T1 cells were transfected with lv-LncRNA-MEG3 or lv-control and then co-transfected with miR-214 mimic or miR-214 mock. As
shown in Fig. 6B and C, the RNA level of AIFM2 was strongly upregulated by MEG3 and was suppressed by miR-214 detected through qRT-PCR (P<0.05). Similarly, the result of western blotting exhibited that the levels of AIFM2 in Jurkat and SUP-T1 cells was significantly elevated by MEG3 and was reduced by miR-214 (Fig. 6D and E).
Furthermore, the impact of miR-214 on cell proliferation, cell apoptosis and cell cycle was adverse to that of MEG3. Compared with the miR-214 mock group, cell proliferation was promoted by miR-214 mimic and the facilitating role was weakened by MEG3 (Fig. 6F; P<0.01). Moreover, the increased cell apoptosis rate by MEG3 was downregulated by co-transfecting with miR-214 mimic in SUP-T1 cells (Fig. 6G; P<0.01). Compared with the control group, cell cycle was arrested in G2/M phase by MEG3 and the regulating role was abolished by miR-214 mimic (Fig. 6H; P<0.01).

The expression of related proteins in SUP-T1 cells was detected through western blotting. Compared with the control group, the level of proliferation marker proteins Ki-67 and PCNA was inhibited by MEG3 and was elevated by miR-214 mimic (Fig. 6I). As expected, the level of apoptosis marker proteins (caspase-3 and caspase-9) was enriched by MEG3 and was decreased by miR-144 mimic (Fig. 6J). The opposite effect on the regulation of cell cycle marker proteins p21 and cyclin A was seen between miR-214 and MEG3 through western blotting (Fig. 6K). Taken together, our results above reveal that AIFM2 is upregulated by MEG3 by targeting miR-214.

The relationship among the expression level of MEG3, miR-214 and AIFM2. Knowing that the level of AIFM2 was upregulated by MEG3 and was suppressed by miR-214 in T-LBL cell lines, further research was conducted to explore the relationship among the expression level of MEG3, miR-214 and AIFM2 in T-LBL tissues. RNA was extracted in T-LBL tissues donated from Chengdu Military General Hospital of PLA (n=38). Relative expression of MEG3, miR-214 and AIFM2 was detected through qRT-PCR. As shown in Fig. 7A and B, the expression of miR-214 varied inversely with the expression of MEG3 and AIFM2, respectively. Besides, relative expression of AIFM2 was positively related to the level of MEG3 (Fig. 7C). Thus, we conclude that the expression of AIFM2 was upregulated by MEG3 and was downregulated by miR-214 in vivo.

Overexpression of MEG3 inhibits tumor growth in vivo. We then set out to explore the effect of exogenous MEG3 over-expression on T-LBL in vivo. SUP-T1 cells were transfected with lv-LncRNA-MEG3 or lv-scramble for 24 h. Then, the cells were collected and inoculated into female athymic nude mice subcutaneously. Average tumor volume in tissues donated from Chengdu Military General Hospital of PLA (n=38). Relative expression of MEG3, miR-214 and AIFM2 was detected through qRT-PCR. As shown in Fig. 7A and B, the expression of miR-214 varied inversely with the expression of MEG3 and AIFM2, respectively. Besides, relative expression of AIFM2 was positively related to the level of MEG3 (Fig. 7C). Thus, we conclude that the expression of AIFM2 was upregulated by MEG3 and was downregulated by miR-214 in vivo.

Overexpression of MEG3 inhibits tumor growth in vivo. We then set out to explore the effect of exogenous MEG3 over-expression on T-LBL in vivo. SUP-T1 cells were transfected with lv-LncRNA-MEG3 or lv-scramble for 24 h. Then, the cells were collected and inoculated into female athymic nude mice subcutaneously. Average tumor volume in T-LBL tissues donated from Chengdu Military General Hospital of PLA (n=38). Relative expression of MEG3, miR-214 and AIFM2 was detected through qRT-PCR. As shown in Fig. 7A and B, the expression of miR-214 varied inversely with the expression of MEG3 and AIFM2, respectively. Besides, relative expression of AIFM2 was positively related to the level of MEG3 (Fig. 7C). Thus, we conclude that the expression of AIFM2 was upregulated by MEG3 and was downregulated by miR-214 in vivo.

Discussion

T-cell lymphoblastic lymphoma is an aggressive malignancy and ranks the second most common subtype of non-Hodgkin lymphoma in children. Due to the lack of adequate understanding of the pathogenesis and genetic change of T-LBL, it is difficult to carry out a targeted and effective therapeutic method, so high risk of recurrence and worse overall survival have always been difficult problems in T-LBL treatment (30). In a previous study, MEG3 was identified to be involved in multiple physical functions and diseases. However, little is known about the roles and mechanisms of MEG3 in T-LBL process. In the present study, we presented a new perspective that MEG3 participated in the regulation of T-LBL proliferation and apoptosis through the MEG3-miR-214-AIFM2 pathway.

The present studies established that the expression of MEG3 was found universally downregulated human primary tumors, including 25% of neuroblastomas (31), 81% of hepatocellular cancers (12) and 82% of gliomas (32). For example, downregulation of MEG3 was associated with poor prognosis and repressed the proliferation, clone formation and induced apoptosis in glioma cells (33). Furthermore, downregulation of MEG3 in cancer has a close relationship with tumor grade (34). According to cytogenetic studies, abnormalities of chromosome 14, including 14q32, is found more frequently in higher grade cancers (35). Thus, the low expression of MEG3 has become a biomarker for an increased risk of metastasis and a poor prognosis in cancer treatment. As expected, downregulated expression of MEG3 was found in T-LBL tissues and related cell lines compared with normal tissues and cell lines. The results suggest that the suppressed expression of MEG3 is involved in the pathogenesis of T-LBL.

Emerging evidence has identified that MEG3 acts as tumor suppressor in various cancers. For example, Zhang et al (36) reported that downregulated MEG3 suppressed proliferation and promoted apoptosis by regulating miR-21 in cervical cancer. Others pointed out that suppressed MEG3 inhibited proliferation, migration and invasion by depending on the p53 transcriptional activity in breast cancer (37). Similarly, in the present study, decreased cell proliferation and elevated cell apoptosis were measured after transfecting lv-LncRNA-MEG3 into T-LBL cell lines. Previous studies revealed that downregulated MEG3 induced cell cycle arrest in lung cancer (38), nasopharyngeal carcinoma (39) and human hepatoma (40). In accordance with these investigations, we found that an obvious cell cycle arrest in G2/M phase was induced by LncRNA-MEG3 in T-LBL cell lines. Previous studies revealed that downregulated MEG3 induced cell cycle arrest in lung cancer (38), nasopharyngeal carcinoma (39) and human hepatoma (40). In accordance with these investigations, we found that an obvious cell cycle arrest in G2/M phase was induced by LncRNA-MEG3 in T-LBL cell lines. Upregulated expression of p21 and decreased level of cyclin A in SUP-T1 cells transfected with lv-LncRNA-MEG3 further identified that overexpressed MEG3 inhibited proliferation of T-LBL in vitro. The results above demonstrate that overexpressed MEG3 restrains cell proliferation and promotes cell apoptosis in T-LBL cell lines.

MiRNAs have been identified to play regulating roles in various cellular pathological processes. Previous research evidenced that miR-214 suppressed growth and invasion of
cervical cancer cells by downregulating ADP ribosylation factor like 2 (ARL2) (41). Others demonstrated that miR-214 was downregulated in breast cancer and served as a novel tumor suppressor through inhibiting WNT signaling by direct repression of β-catenin (42). However, miR-214 has also been suggested as an oncogene in some diseases, such as osteosarcoma (43) and gastric cancer (44). In recent reports, the expression of miR-214 was found upregulated in T-cell lymphoma and overexpressed miR-214 acted as diagnostic/prognostic biomarkers in T-cell lymphoma (45). Similarly, upregulated level of miR-214 was detected in T-LBL tissues and related cell lines compared with normal tissues and cell lines. According to previous reports, miRNAs negatively influenced their target genes by binding to target mRNA transcripts of protein-coding genes specifically. Sharma et al (46) demonstrated that the combination of miR-214 and 3' untranslated regions (UTR) of target mRNAs led to inhibition of protein production in cancers. In agreement with these reports, miR-214 was predicted as a target of MEG3 through bioinformatics analysis in this study. Besides, the level of miR-214 was elevated adding miR-214 mimic in SUP-T1 cells transfected with LncRNA-MEG3. Similarly, upregulated level of miR-214 was downregulated adding miR-214 inhibitor in SUP-T1 cells transfected with MEG3 siRNA. Luciferase reporter assays showed that miR-214 mimic largely reduced the fluorescence signal by binding with the 3'-UTR of MEG3 WT. The results above revealed that miR-214 is a direct target of LncR-MEG3.

AIFM2 was reported significantly associated with fatigue in prostate cancer patients during receiving external beam radiation therapy (47). The DNA binding activity of AIFM2 contributed to the onset of apoptosis in human colon cancer cells (48). However, the regulating role of AIFM2 in T-LBL is still elusive. Previous studies validated that the expression of miR-214 was found upregulated in T-cell lymphoma and overexpressed miR-214 to upregulate the expression of AIFM2. Moreover, miR-214 was verified to restrain the proliferation of T-LBL by sponging miR-214 to upregulate the expression of AIFM2. Moreover, miR-214 was identified to suppress T-LBL growth in vivo. In summary, the MEG3-miR-214-AIFM2 pathway may serve as potential prognosis marker and new target for cancer therapy.

Acknowledgements

The present study was funded by the project of Young Talent Reserve of Chengdu Military Region General Hospital (no. 2016kc40).

References

