Abstract. Accumulating evidence shows that 18β-glycyrrhetinic acid (GRA) has antitumor activities in breast, ovarian cancer and leukemia, while its role in colorectal cancer remains unknown. In the present study, we investigated the effect of GRA in colorectal cancer cells LoVo, SW480 and SW620 and studied the underlying molecular mechanisms. Results showed that GRA had potent inhibitory effects on colorectal cancer cell proliferation in a dose- and time-dependent manner in vitro and in vivo. Growth inhibition was mediated by pro-apoptosis, as evident from Annexin V-FITC staining, the reduced expression of survivin and the induced expression of cleaved PARP. Furthermore, GRA treatment resulted in marked reduction of cell migration, invasion and wound healing capability, accompanying by the downregulated MMP expression. Moreover, GRA decreased the protein levels of p-PI3K, p-AKT, p-STAT3, p-JNK, p-p38 and p-NF-κB p65, of which the phosphorylation of PI3K and STAT3 decreased as early as 2 h after the GRA treatment. These results suggest that regulation of the apoptosis, invasion and migration of colorectal cancer cells by GRA might be through suppressing PI3K and STAT3 signaling pathways. The present study indicated that GRA could be a potential effective therapy for patients with colorectal cancer.

Introduction

Radix Glycyrrhiza, the most extensively-used ingredient in formulas of Chinese medicine, has been considered to treat diseases (including cancers) for thousands of years in China. The 18β-glycyrrhetinic acid (GRA) (Fig. 1), a pentacyclic triterpenoid extracted from the root of Licorice, has been shown to display multiple physiological functions, such as anti-microbial (1,2), anti-inflammatory (3,4), anti-viral (5), anti-ulcer (6) and hepatoprotective effects (3). Recently, the antitumor effect of GRA has been extensively investigated in vitro and in vivo in breast (7,8), ovarian cancer (9), promyelocytic leukemia (10), hepatoma and stomach cancer cells (11). The mechanisms of antitumor of GRA include disruption of actin cytoskeleton (12), inhibition of metastasis by impairing the p38 MAPK-AP1 signaling axis (7) and induction of Fas- or DNA fragmentation-mediated apoptosis (9-11). Furthermore, GRA has selective toxicity against tumor cells while has no effect on normal cells and its efficacy is more potent than those of some clinically available antitumor agents (12).

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth cause of cancer-related deaths worldwide (13). Colorectal cancer presents multiple processes involving accumulation of mutations in oncogenes, inactivation of tumor suppressors and existence of various signaling pathways, leading to genetic disorders, dysregulation of apoptosis, increased invasiveness and morphological progression (14). Current therapy of colorectal cancer involves surgery, chemotherapy, radiotherapy and targeted therapy. Chemotherapy helps impeding cell growth, triggering cell death, preventing cancer cell metastasis and lowering the risk of recurrence (15,16). While chemotherapy is money-consuming and has many side-effects such as myelosuppression, fatigue, pain, diarrhea and so on. Alternative effective therapies are in demand. Traditional Chinese medicine (TCM) is an available option which has the advantage of reducing toxic side-effects and improving the efficacy of chemotherapy (17,18).

Although the antitumor effects of GRA have been extensively studied, its role in colorectal cancer and the underlying mechanisms remains unknown. In the present study, we report...
that GRA can inhibit the proliferation of colorectal cancer cells both in vitro and in vivo which might be through the induction of pro-apoptosis. We also found that GRA potently inhibits the migration and invasion of colorectal cancer cells and reduces matrix metalloproteinase (MMP) expression as well. Furthermore, our findings suggested the regulation of apoptosis, invasion and migration of colorectal cancer cells by GRA probably through suppressing PI3K and STAT3 signaling pathways.

Materials and methods

Reagents and antibodies. 18 β-glycyrrhetinic acid (98% of purity, determined by HPLC) was purchased from Aladdin Bio-Chem Technology Corp. (Shanghai, China) and dissolved in dimethyl sulfoxide (DMSO). Antibodies used in western blotting against MMP1, MMP2, MMP3 and MMP9 were bought from Proteintech Group Inc. (Chicago, IL, USA). Antibodies against Poly(ADP-ribose) polymerase (PARP), phospho-PI3K p85/p55, phospho-AKT, AKT, phospho-STAT3, STAT3, phospho-p38, p38, phospho-Erk1/2, Erk1/2, phospho-SAPK/JNK, SAPK/JNK, phospho-NF-κB p65, NF-κB p65 and β-actin were obtained from Cell Signaling Technology (Danvers, MA, USA).

Cell culture. The human CRC cell lines LoVo, SW480 and SW620 and a normal human colon mucosal epithelial cell line (NCM460) were obtained from the American Type Culture Collection and cultured in RPMI-1640 medium complemented with 10% heat-inactivated fetal bovine serum (FBS), penicillin/streptomycin (100 U/ml) and L-glutamine (2 mM). Cells were cultured at 37°C with 5% CO2 in a humid incubator. All the cell culture reagents were purchased from Invitrogen (Shanghai, China).

Cell growth inhibition assay. Cells were plated in 96-well plates at a density of 1x10^3 cells/well and cultured in complete medium supplemented with varied concentrations of GRA (0, 12.5, 25 and 50 µM). After culturing for 24, 48, 72 and 96 h, cell growth was analyzed by CCK-8 assay. A total of 10 µl of CCK-8 solution reagent (Beyotime Institute of Biotechnology, Haimen, China) was added to each well and cultured for another 1 h. Absorbance at 450 nm was measured on an ultra-microplate reader (EMax; Molecular Devices, Sunnyvale, CA, USA). The growth inhibition rate was calculated with the following formula: (Ab. control - Ab. treated) / Ab. control x 100. The IC50 was taken as the concentration at which it caused 50% inhibition of cell proliferation (50% reduction in the absorbance value in the treated cells, in respect to control). IC50 was calculated by curve fitting statistical analysis by GraphPad Prism (Graphpad Software, Inc., San Diego, CA, USA).

Annexin V apoptosis assay. To determine apoptosis, the cells were stained with the Annexin V apoptosis kit according to the manufacturer’s instructions (Lianke Biotech Co., Ltd., Hangzhou, China). In brief, 1x10^5 cells in 6-well plate were treated with or without GRA for 48 h before cells were trypsinized, washed with ice-cold PBS, resuspended in 500 µl binding buffer and incubated with 5 µl Annexin V-FITC and 10 µl propidium iodide (PI) working solution at room temperature for 5 min in the dark. Stained cells were then analyzed by flow cytometry (BD FACScan; BD Biosciences, San Jose, CA, USA).

Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Cells in 6-well plate at a density of 2x10^5 were treated with GRA at different concentrations for 24 h and total RNA was extracted using Ultra-Pure RNA kit (Cwbiotech, Beijing, China). After DNase treatment, cDNA was synthesized by the HiFiScript cDNA Synthesis kit (Cwbiotech). Reverse transcriptase PCR was performed on 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA). Quantitative PCR was then performed with 1 µl of cDNA using the iTaq Universal SYBR-Green Supermix (Bio-Rad Laboratories) on CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories). The specific primers for survivin and β-actin were as follows: survivin: 5’-GATTTGATCGCCGGGACCCGTG-3’ (forward) and 5’-CAGACGAAACAGGAGCACAG-3’ (reverse); β-actin: 5’-GTATCCATGCCCTGAAGTGAC-3’ (forward) and 5’-TCAAGGCGGTACACCA-3’ (reverse). qPCR results were analyzed by the CFX Manager software, and the qPCR data were normalized to the housekeeping gene β-actin, and the fold-change was calculated as referenced to control.

Migration and invasion assay. Transwell migration and invasion assays were carried out using cell culture chambers with 8-µm pore filter (Corning Costar Corp., Cambridge, MA, USA). In invasion assay, the upper surfaces of the membranes were coated with 50 µl Matrigel (BD Biosciences) 6 h before cells were seeded. Cells/well (2x10^5) in 200 µl serum-free RPMI-1640 were added into the upper chamber of 24-well plates supplied with or without 50 µg/M GRA. Culture media containing 20% FBS were added in the lower chamber. After 48 h culturing, the cells in the upper chamber were removed by wiping the upper side of the membrane with a cotton swab and cells in the lower surface of the membrane were fixed with ice-cold methanol for 5 min and stained with crystal violet in 20% ethanol overnight. Images were acquired by light microscopy and the cells invaded to the underside of the membrane were counted.
quantitated by cell counting in five predetermined fields. To determine whether the invasion inhibition was caused by the decreasing of cells number, the number of the LoVo cells after invasion was recorded in both sides of the chamber.

The methods used for the migration assay were almost the same as the invasion assay described above, except for no Matrigel coating in the upper surfaces of the membranes.

Wound healing assay. Cells were seeded in 24-well plate at an initial density of 1.5x10⁵/well and allowed to grow to 90% confluency in complete medium. Cells were wounded by a plastic tip and then washed three times with phosphate-buffered saline (PBS) to remove the cell debris and incubated for 24 h in 5% FBS medium containing different concentrations of GRA. Images of the wound morphology were acquired by light microscopy.

Xenograft tumor models. Four- to five-week-old female BALB/c nude mice, weighing between 16-18 g were purchased from Shanghai Laboratory Animal Company (SLAC; Shanghai, China). Mice were maintained in the animal facility at the Zhejiang University, China. The animal experiments were approved by Animal Care and Use Committee of Zhejiang University. LoVo cells (5x10⁵) resuspended in 100 µl PBS were injected subcutaneously in the right flanks of the nude mice. When tumors reached an average volume of 100 mm³, the mice were randomly divided into two groups. Mice in GRA-treated group were intraperitoneally injected with GRA at 40 mg/kg once every 2 days in 1% DMSO in PBS. The mice in control group received the same volume of PBS. Tumor size and body weight were measured by periodic measurements with calipers every 5 days until day 45 after tumor cell implantation at which time some mice began to die. Tumor volume was calculated using the following formula: V = (length x width²)/2. The survival was recorded and the mice were sacrificed at 55 days after tumor cell implantation.

Western blotting. Cells plated in 6-well plate at a density of 2x10⁵ were treated with GRA at different concentrations for 24 h or cells were treated with the indicated concentrations of GRA for 2, 4, 6 and 12 h and total cellular proteins were extracted for western blotting. Cells were lysed in 1X RIPA buffer (Cell Signaling Technology, Danvers, MA, USA) containing 1 mM phenylmethlysulfonyl fluoride (PMSF; Cell Signaling Technology) and protease inhibitor cocktail. Protein concentration was determined by BCA (Pierce) followed by intraperitoneal injection of 40 mg/kg GRA or vehicle (DMSO) once every 2 days for 1 month. As seen in Fig. 2B, the tumor volume was significantly larger in the control group than that in GRA-treated group. Consistently, the body weight of the GRA-treated group decreased more slowly than the DMSO-treated group. Survival curve till 55 days after tumor cells implanted is shown in Fig. 2C. The survival periods of LoVo xenograft mice in GRA-treated group were significantly longer than that of DMSO-treated mice (P<0.05; Kaplan-Meier). These results show that GRA can effectively inhibit colorectal cancer development both in vitro and in vivo.

Table I. IC₅₀ (µM) values of GRA on different cells.

<table>
<thead>
<tr>
<th></th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCM460</td>
<td>866</td>
<td>144.8</td>
<td>141.3</td>
</tr>
<tr>
<td>SW620</td>
<td>360.9</td>
<td>82.28</td>
<td>60.19</td>
</tr>
<tr>
<td>SW480</td>
<td>153.8</td>
<td>88.23</td>
<td>34.64</td>
</tr>
<tr>
<td>LoVo</td>
<td>99.48</td>
<td>71.23</td>
<td>43.23</td>
</tr>
</tbody>
</table>

Statistical analysis. All assays were performed in triplicate and experiments were repeated three times. Data are presented as mean ± SEM. Significance of differences between the two independent groups was determined by the Student’s t-test. Survival curves were drawn by the Kaplan-Meier method and analyzed using the log-rank test. Statistical calculations were performed using Graph Pad Prism. A P<0.05 was considered statistically significant.

Results

GRA inhibits colorectal cancer cell proliferation both in vitro and in vivo. To evaluate the general inhibitory effect of GRA on colorectal cancer cell growth, we first examined the effect of GRA on three colorectal cancer cell lines LoVo, SW620 and SW480 and the normal colon mucosal epithelial cell line NCM460. Cells were treated with GRA at varying concentrations ranging from 12.5 to 50 µM, as we had previously determined that the IC₅₀ value was >50 µM in all three colorectal cancer lines and the normal colon mucosal epithelial cell line. As shown in Fig. 2A, comparing with the NCM460, the proliferation level of LoVo, SW620 and SW480 was significantly inhibited. IC₅₀ value of GRA for NCM460, LoVo, SW620 and SW480 cells was calculated. As detailed in Table I, the IC₅₀ value of GRA for NCM460 cells was 866, 144.8 and 141.3 µM at 24, 48 and 72 h, respectively, which is much higher than that for SW620 (360.9, 82.28 and 60.19 µM), SW480 (153.8, 88.23 and 34.64 µM) or LoVo (99.48, 71.23 and 43.23 µM) cells. The inhibitory effect was both dose- and time-dependent. Furthermore, to evaluate whether GRA can inhibit tumorigenicity of colorectal cancer in vivo, nude mice were implanted subcutaneously with LoVo cells for 10 days followed by intraperitoneal injection of 40 mg/kg GRA or vehicle (DMSO) once every 2 days for 1 month. As seen in Fig. 2B, the tumor volume was significantly larger in the control group than that in GRA-treated group.

Graft promotes apoptosis in colorectal cancer cells. To investigate whether GRA inhibits cells proliferation by regulating apoptosis, Annexin V-FITC staining was performed in LoVo, SW620 and SW480 cells after treatment with GRA at 25 and
NG et al.: 18 β-GLYCRRHETIC ACID INHIBITS PROLIFERATION AND MIGRATION OF COLORECTAL CANCER

50 µM for 48 h. As shown in Fig. 3A, flow cytometric analysis showed a significant increase in the apoptotic population of the cells treated with GRA compared with that of the cells without treatment. Anti-apoptotic protein survivin is expressed abundantly in human colorectal cancer and its expression indicates poor prognosis and a pro-metastatic phenotype (19). Inhibition of survivin expression is associated with the growth suppression and apoptosis induction by antitumor agents (20), thus, we next investigated whether the pro-apoptotic effect of GRA was mediated by regulation of survivin expression. We detected the survivin expression in LoVo, SW620 and SW480 cells after treatment with GRA by RT-qPCR. As shown in Fig. 3B, GRA induced a dose-dependent reduction of survivin expression, of which the most significant reduction was at 50 µM, suggesting a potential role for survivin in GRA-induced colorectal cancer cells death. Poly-ADP-ribose polymerase (PARP), one essential substrate cleaved by both caspase-3 and -7, is an abundant DNA-binding enzyme. The presence of cleaved PARP-1 is one of the most potent indicators for the detection of apoptosis in many cell types (21,22). Thus, we also tested it and found that the active form of PARP was slightly induced upon GRA treatment as shown in Fig. 3C. These data indicated that GRA suppresses colorectal cancer development partly through promoting the apoptosis process.

GRA inhibits the invasion and migration of colorectal cancer cells. To determine whether GRA was involved in the regulation of colorectal cancer metastasis, we performed Transwell assay on LoVo, SW620 and SW480 cells. Cells plated in the upper chamber in serum-free medium were treated with 50 µM GRA for 48 h. The invasive and migratory abilities were evaluated based on the numbers of cells passed through the membrane. As shown in Fig. 4A, in control group, the number of invaded LoVo, SW620, SW480 cells was 75.5±5.838, 106.5±12.98 and 122.3±11.74, but in GRA treated cells, the numbers decreased to 49.50±3.663, 41.75±4.385 and 47.25±3.966, respectively (P<0.05). The migration assay (Fig. 4B) showed similar results. With the number of migrated LoVo, SW620, SW480 cell being 222.8±19.44, 54.25±3.425 and 56.50±2.723, the treatment of GRA decreased the numbers to 110±4.435, 33.5±2.598 and 35.25±3.250, respectively (P<0.05). Taken together, the results indicated that GRA inhibits invasive and migratory ability of colorectal cancer cells. In addition, we also calculated the number of the LoVo cells after invasion in both sides of the chamber. As shown in Fig. 4C, GRA treatment significantly decreased LoVo cell invasion while had no significant effect on the cell numbers in the upper side of the chamber, indicating that the invasion and migration inhibitory effect of GRA was not caused by decrease of the cell number. Consistent with the invasion and migration results, GRA treatment induced a slower closing of scratch wounds in LoVo cells, indicating that GRA efficiently inhibited motility activity of LoVo cells (Fig. 4D). We next determined the changes of the expression of several matrix metalloproteinases (MMPs), which are strongly related with tumor metastasis and overexpressed in human colorectal cancers (23). MMP1, MMP2, MMP3 and MMP9 were significantly decreased after GRA treatment in LoVo, SW620 and SW480 cells (Fig. 4E). These data together clearly show that GRA could impede the invasion and migration of colorectal cancer cells.

GRA inhibits the phosphorylation of PI3K/AKT, STAT3, p38, JNK and NF-κB in colorectal cancer cells. Previous studies have shown multiple signaling pathways such as PI3K/AKT, p-STAT3, MAPKs and NF-κB are activated in colorectal cancers, and activation of these signaling pathways affect the proliferation, invasion and migration of tumor cells. Thus, we

Figure 2. GRA inhibits colorectal cancer cell proliferation both in vitro and in vivo. (A) LoVo, SW620, SW480 and NCM460 cells were treated with 0, 12.5, 25 and 50 µM of GRA for 1, 2 or 3 days followed by the CCK-8 assay to analyze the cell growth. Absorbance at 450 nm was measured on an ultra-microplate reader. The growth inhibition rate was calculated as the following formula: (Ab. control - Ab. treated)/Ab. control x 100. (B) Nude mice were inoculated with LoVo cells followed by vehicle (DMSO) or 40 mg/kg GRA-treatment 10 days after inoculation. The volume of tumors and weight of the mice were measured every 5 days. Results were obtained from 3 independent experiments and expressed as means ± SEM. *P<0.05. (C) Kaplan-Meier overall survival curve of LoVo cell-implanted nude mice until day 55. The survival probability in nude mice with GRA treatment (n=5) was significantly higher than that in mice treated with DMSO (n=5). Log-rank test, P=0.0432.
investigated whether GRA inhibited proliferation, invasion, and migration of colorectal cancer cells by altering the activation of these signaling pathways. LoVo, SW620 and SW480 cells were treated with GRA for 24 h before proteins were extracted for western blot analysis. As shown in Fig. 5, GRA dose-dependently reduced the protein expression of p-PI3K.
Figure 4. GRA inhibits the invasion and migration of colorectal cancer cells. Invasion and migration assays of LoVo, SW620 and SW480 cells treated with 50 µM GRA or not were performed using cell culture chambers with 8-µm pore filter. Forty-eight hours later, the cells invaded (A) or migrated (B) to the underside of the membrane were quantitated by cell counting in five predetermined fields. (C) Invasion of LoVo cells treated with 50 µM GRA or not was performed as above. Forty-eight hours later, the cells in both sides of the chamber were determined. (D) Monolayers of LoVo cells were wounded by a plastic tip and then incubated for another 24 h in 5% FBS medium with different concentrations of GRA. Images of the wound morphology were acquired by light microscopy. (E) LoVo, SW620 and SW480 cells were treated with GRA at different concentrations for 24 h and total cellular proteins were extracted for western blotting to detect the MMP expression. Western blot bands were quantified by ImageJ and normalized to β-actin and compared with control (no GRA treatment). Results were obtained from 3 independent experiments and expressed as means ± SEM. Representative images are presented. *P<0.05, **P<0.01, ***P<0.001.
Figure 5. GRA inhibits the phosphorylation of PI3K/AKT, STAT3, p38 and JNK in colorectal cancer cells. LoVo, SW620 and SW480 cells (2x10^5) were treated with GRA at different concentrations for 24 h and total cellular proteins were extracted for western blotting to detect the expression of (A) p-PI3K p85/p55, p-AKT, AKT, (B) p-STAT3, (C) p-SAPK/JNK, SAPK/JNK, p-p38, p38, p-Erk1/2, Erk1/2, (D) p-NF-κB p65, and NF-κB p65. Results are representative of three independent experiments. Western blot bands were quantified by ImageJ and normalized to their own total proteins and compared with Control (no GRA treatment).
p-AKT, p-STAT3, p-JNK, p-p38 and p-NF-κB whereas had no significant effect on the expression of p-Erk. Time course studies were also performed at 2, 4, 6 and 12 h after GRA treatment. As shown in Fig. 6, the phosphorylation levels of PI3K p85/p55 and STAT3 decreased as early as 2 h after GRA treatment, suggesting they are the main signaling pathways regulated by GRA. The phosphorylation levels of p-AKT, p-JNK, p-p38 and NF-κB p65 were also decreased, but in later time-points, suggesting these effects may be secondary to the drug treatment.

Discussion

Although great progresses have been made in developing therapeutic approaches against colorectal cancer, serious side-effects of those available treatments is still a problem beyond people's acceptance in most cases. Traditional Chinese medicine may be an untapped treasure for developing better agents for cancer remedy since more and more Chinese herbs are found to efficiently suppress various cancers with lower side-effects. In the present study, we report that GRA, a component of Radix *Glycyrrhiza* with the antitumor activity against human breast cancer cell lines (7) and lung cancer cell line (24) inhibits the proliferation, migration and invasion of colorectal cancer cell lines LoVo, SW620 and SW480. Furthermore, our results indicated that GRA-induced apoptosis as well as downregulation of MMP1, 2, 3, 9 expression, respectively, is associated with the downregulation of PI3K and STAT3 signaling pathways.

Activation of PI3K/AKT signaling pathway in cancer results in increased cell survival, outgrowth and enhanced cell migration (25). Inhibition of its activation will downregulate expression of survivin, MMP1, 2, 3, 9 expression, respectively, is associated with the downregulation of PI3K and STAT3 signaling pathways.

Constitutive activation of STAT3 is frequently detected in primary human colorectal cancers and established colorectal cancer cell lines. Inhibition of its activation will downregulate expression of survivin, MMP1, 2, 3, 9 expression, respectively, is associated with the downregulation of PI3K and STAT3 signaling pathways.
cancer cell lines (33), and is closely related to tumor proliferation, differentiation, invasion and metastasis (34,35). Elevated levels of STAT3 phosphorylation were correlated with the induced survivin gene expression and inhibition of STAT3 activation could reduce survivin expression and promote apoptosis of cancer cells (36,37). Moreover, activation of STAT3 induced MMP1, 3, 7 and 9 expressions, promoting invasiveness of cancer cells (38). Our results showed that GRA treatment inhibited survivin expression and STAT3 phosphorylation could reduce survivin expression and promote inhibition of STAT3 levels of STAT3 phosphorylation were correlated with the activation could reduce survivin expression and promote inhibition of STAT3 in colorectal cancer cells, which is consistent with the previous study that glycyrrhizic acid inhibits the cell growth and migration via blocking AKT/STAT3 singling pathway in leukemia cells (39).

Three major mitogen activated protein kinase (MAPK) families: Erk, p38 and JNK are deregulated in colorectal cancers, and are significantly associated with cell proliferation, migration and invasion (40). Survivin is a downstream effector of p38 (41) and Erk (42). MMP production is also tightly regulated by the MAPKs (43). Phosphorylation of p38, Erk and JNK can induce MMP1, 2, 3 and 9 expression (44-57). Our results confirmed that p-Erk, p-p38 and p-JNK are activated in LoVo, SW620 and SW480 cells, while GRA treatment selectively inhibited the phosphorylation of p38 and p-JNK. One study showed that in breast cancer cells, GRA decreases selectively inhibited the phosphorylation of p-p38 and p-JNK. Three major mitogen activated protein kinase (MAPK) families: Erk, p38 and JNK are deregulated in colorectal cancers, and are significantly associated with cell proliferation, migration and invasion (40). Survivin is a downstream effector of p38 (41) and Erk (42). MMP production is also tightly regulated by the MAPKs (43). Phosphorylation of p38, Erk and JNK can induce MMP1, 2, 3 and 9 expression (44-57). Our results confirmed that p-Erk, p-p38 and p-JNK are activated in LoVo, SW620 and SW480 cells, while GRA treatment selectively inhibited the phosphorylation of p38 and p-JNK. One study showed that in breast cancer cells, GRA decreases selectively inhibited the phosphorylation of p-p38 and p-JNK. One study showed that in breast cancer cells, GRA decreases selectively inhibited the phosphorylation of p-p38 and p-JNK.

NF-κB activation contributes to the induction of cellular transformation, progression and metastasis of colorectal cancers (54). NF-κB cooperates with other molecules such as STAT3, PI3K to regulate a number of target genes including survivin and MMPs (55-57). Our results showed that GRA inhibits NF-κB activation in LoVo, SW620 and SW480 cells, which was consistent with previous results (4). While the decreased phosphorylation of NF-κB occurs later than STAT3 and PI3K, implying NF-κB downregulation is secondary effect of the drug treatment. In summary, to the best of our knowledge, we are the first to demonstrate that GRA can effectively inhibit colorectal cancer cell proliferation, invasion and migration probably through suppressing PI3K and STAT3 signaling pathways. The present study indicated that GRA could be a potential effective and safe therapeutic agent for patients with colorectal cancer.

Acknowledgements

We thank Ruoque Mao from Ulink College of Shanghai for her contributions in the CCK-8 assay as parts of her high school students training programme. The present study was supported by a grant from the Key Project of Natural Science Foundation of Zhejiang Province (LJ16H160003 to W.-B.C.).

References

