miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells

  • Authors:
    • Qiulin Tang
    • Mingxing Li
    • Liang Chen
    • Feng Bi
    • Hongwei Xia
  • View Affiliations

  • Published online on: July 20, 2018     https://doi.org/10.3892/ijo.2018.4493
  • Pages: 1732-1742
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Lung cancer is a major cause of mortality worldwide and non‑small cell lung cancer (NSCLC) accounts for ~80% of all cases of lung cancer. Increasing evidence indicates that Rho family GTPase 3 (RhoE) is important in the carcinogenesis and progression of NSCLC. In addition, several studies have indicated that microRNA (miR)‑200b/c is downregulated in NSCLC cells. However, the exact mechanism remains to be elucidated. In the present study, immunohistochemistry (IHC) assays were used to analyze the RhoE and epithelial‑mesenchymal transition (EMT)‑related proteins in NSCLC tissues. Putative target sequences of the RhoE 3' untranslated region (3'UTR) for miR‑200b/c were detected using bioinformatics analysis. The mRNA expression levels of RhoE and miR‑200b/c were determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, and western blot analysis was used to detect the protein levels of RhoE in cells. The luciferase‑reporter activity of the RhoE 3'UTR was detected using a dual‑luciferase assay. A cell counting kit‑8 assay, flow cytometry and Transwell assay were used to detect cell proliferation, cell cycle, and invasion and migration ability, respectively. The IHC assays indicated that RhoE was overexpressed in NSCLC tissues. The bioinformatics analysis revealed that the RhoE 3'UTR contained a putative target site for miR‑200b/c, which was conserved across species. The results of RT‑qPCR analysis showed that the mRNA expression of RhoE was overexpressed and miR‑200b/200c was decreased in lung cancer tissues. The enhanced expression of miR‑200b or miR‑200c significantly downregulated the expression of RhoE at the mRNA and protein levels in A549 and NCI‑H1299 NSCLC cells. Furthermore, luciferase assays showed that miR‑200b and miR‑200c directly targeted the 3'UTR of RhoE. The forced expression of miR‑200b or miR‑200c markedly inhibited A549 cell and NCI‑H1299 cell proliferation, G0/G1 progression and cell invasion, which was consistent with the effects of RNA interference‑mediated RhoE knockdown in these cells. The suppression of RhoE regulated the expression of EMT‑related markers, which was consistent with the effect of miR‑200b/c in NSCLC cells, and the expression of EMT‑related proteins and RhoE were also correlated in the lung cancer tissues. Therefore, miR‑200b and miR‑200c targeted the expression of RhoE and inhibited the malignancy of NSCLC cells, and the downregulation of miR‑200b and miR‑200c may contribute to the high expression of RhoE in NSCLC.

References

1 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

2 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Moss EG: MicroRNAs: Hidden in the genome. Curr Biol. 12:R138–R140. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M and Allgayer H: Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res. 8:1207–1216. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Li J, Tan Q, Yan M, Liu L, Lin H, Zhao F, Bao G, Kong H, Ge C, Zhang F, et al: miRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer. 13:1662014. View Article : Google Scholar : PubMed/NCBI

8 

Shi L, Zhang S, Wu H, Zhang L, Dai X, Hu J, Xue J, Liu T, Liang Y and Wu G: MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PLoS One. 8:e783442013. View Article : Google Scholar : PubMed/NCBI

9 

Wang C, Ding M, Xia M, Chen S, Van Le A, Soto-Gil R, Shen Y, Wang N, Wang J, Gu W, et al: A five-miRNA panel identified from a multicentric case-control study serves as a novel diagnostic tool for ethnically diverse non-small-cell lung cancer patients. EBioMedicine. 2:1377–1385. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, et al: A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA. 105:13556–13561. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Park SM, Gaur AB, Lengyel E and Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Wong CM, Wei L, Au SL, Fan DN, Zhou Y, Tsang FH, Law CT, Lee JM, He X, Shi J, et al: MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget. 6:13658–13670. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Roybal JD, Zang Y, Ahn YH, Yang Y, Gibbons DL, Baird BN, Alvarez C, Thilaganathan N, Liu DD, Saintigny P, et al: miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer Res. 9:25–35. 2011. View Article : Google Scholar :

15 

Kim JS, Kurie JM and Ahn YH: BMP4 depletion by miR-200 inhibits tumorigenesis and metastasis of lung adenocarcinoma cells. Mol Cancer. 14:1732015. View Article : Google Scholar : PubMed/NCBI

16 

Zhao YF, Han ML, Xiong YJ, Wang L, Fei Y, Shen X, Zhu Y and Liang ZQ: A micRNA-200c/cathepsin L feedback loop determines paclitaxel resistance in human lung cancer A549 cells in vitro through regulating epithelial-mesenchymal transition. Acta Pharmacol Sin. 39:1034–1047. 2018. View Article : Google Scholar

17 

Nishijima N, Seike M, Soeno C, Chiba M, Miyanaga A, Noro R, Sugano T, Matsumoto M, Kubota K and Gemma A: miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells. Int J Oncol. 48:937–944. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Liu M, Bi F, Zhou X and Zheng Y: Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol. 22:365–373. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ and Hansen SH: Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol. 13:1106–1115. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA and Lee SW: RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol. 16:2466–2472. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Zhu Y, Zhou J, Xia H, Chen X, Qiu M, Huang J, Liu S, Tang Q, Lang N, Liu Z, et al: The Rho GTPase RhoE is a p53-regulated candidate tumor suppressor in cancer cells. Int J Oncol. 44:896–904. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zhang C, Zhou F, Li N, Shi S, Feng X, Chen Z, Hang J, Qiu B, Li B, Chang S, et al: Overexpression of RhoE has a prognostic value in non-small cell lung cancer. Ann Surg Oncol. 14:2628–2635. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Cuiyan Z, Jie H, Fang Z, Kezhi Z, Junting W, Susheng S, Xiaoli F, Ning L, Xinhua M, Zhaoli C, et al: Overexpression of RhoE in non-small cell lung cancer (NSCLC) is associated with smoking and correlates with DNA copy number changes. Cancer Biol Ther. 6:335–342. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

25 

Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al: Combinatorial microRNA target predictions. Nat Genet. 37:495–500. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Bektic J, Pfeil K, Berger AP, Ramoner R, Pelzer A, Schäfer G, Kofler K, Bartsch G and Klocker H: Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis. Prostate. 64:332–340. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Liu M, Lang N, Qiu M, Xu F, Li Q, Tang Q, Chen J, Chen X, Zhang S, Liu Z, et al: miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer. 128:1269–1279. 2011. View Article : Google Scholar

28 

Feng X, Wang Z, Fillmore R and Xi Y: MiR-200, a new star miRNA in human cancer. Cancer Lett. 344:166–173. 2014. View Article : Google Scholar :

29 

Brabletz S and Brabletz T: The ZEB/miR-200 feedback loop - a motor of cellular plasticity in development and cancer? EMBO Rep. 11:670–677. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Korpal M, Lee ES, Hu G and Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Vallejo DM, Caparros E and Dominguez M: Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J. 30:756–769. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Liu XG, Zhu WY, Huang YY, Ma LN, Zhou SQ, Wang YK, Zeng F, Zhou JH and Zhang YK: High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol. 29:618–626. 2012. View Article : Google Scholar

33 

Yu J, Ohuchida K, Mizumoto K, Sato N, Kayashima T, Fujita H, Nakata K and Tanaka M: MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer. 9:1692010. View Article : Google Scholar : PubMed/NCBI

34 

Sato H, Shien K, Tomida S, Okayasu K, Suzawa K, Hashida S, Torigoe H, Watanabe M, Yamamoto H, Soh J, et al: Targeting the miR-200c/LIN28B axis in acquired EGFR-TKI resistance non-small cell lung cancer cells harboring EMT features. Sci Rep. 7:408472017. View Article : Google Scholar : PubMed/NCBI

35 

Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 138:592–603. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, et al: Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res. 14:2535–2542. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, et al: MicroRNA signatures in human ovarian cancer. Cancer Res. 67:8699–8707. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD and Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 130:2113–2129. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Zhang L, Deng T, Li X, Liu H, Zhou H, Ma J, Wu M, Zhou M, Shen S, Li X, et al: microRNA-141 is involved in a nasopha-ryngeal carcinoma-related genes network. Carcinogenesis. 31:559–566. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A and Chardin P: A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol. 141:187–197. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J and Settleman J: Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol. 16:2689–2699. 1996. View Article : Google Scholar : PubMed/NCBI

42 

Riou P, Villalonga P and Ridley AJ: Rnd proteins: Multifunctional regulators of the cytoskeleton and cell cycle progression. BioEssays. 32:986–992. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Raz DJ, Ray MR, Kim JY, He B, Taron M, Skrzypski M, Segal M, Gandara DR, Rosell R and Jablons DM: A multigene assay is prognostic of survival in patients with early-stage lung adenocarcinoma. Clin Cancer Res. 14:5565–5570. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Paysan L, Piquet L, Saltel F and Moreau V: Rnd3 in cancer: A Review of the evidence for tumor promoter or suppressor. Mol Cancer Res. 14:1033–1044. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Tang Y, Hu C, Yang H, Cao L, Li Y, Deng P and Huang L: Rnd3 regulates lung cancer cell proliferation through notch signaling. PLoS One. 9:e1118972014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tang, Q., Li, M., Chen, L., Bi, F., & Xia, H. (2018). miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells. International Journal of Oncology, 53, 1732-1742. https://doi.org/10.3892/ijo.2018.4493
MLA
Tang, Q., Li, M., Chen, L., Bi, F., Xia, H."miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells". International Journal of Oncology 53.4 (2018): 1732-1742.
Chicago
Tang, Q., Li, M., Chen, L., Bi, F., Xia, H."miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells". International Journal of Oncology 53, no. 4 (2018): 1732-1742. https://doi.org/10.3892/ijo.2018.4493