Epigenetic control of epithelial-mesenchymal-transition in human cancer (Review)

TOBIAS KIESSLICH1,2, MARTIN PICHLER3 and DANIEL NEUREITER1

1Institute of Pathology; 2Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg; 3Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria

Received August 11, 2012; Accepted September 7, 2012

DOI: 10.3892/mco.2012.28

Abstract. Development and tissue homeostasis as well as carcinogenesis share the evolutionary conserved process of epithelial-mesenchymal transition (EMT). EMT enables differentiated epithelial cells to trans-differentiate to a mesenchymal phenotype which is associated with diverse cellular properties including altered morphology, migration and invasion and stemness. In physiological development and tissue homeostasis, EMT exerts beneficial functions for structured tissue formation and maintenance. Under pathological conditions, EMT causes uncontrolled tissue repair and organ fibrosis, as well as the induction of tumor growth, angiogenesis and metastasis in the context of cancer progression. Particularly, the metastatic process is essentially linked to diverse EMT-driven functions which give the mesenchymal differentiated tumor cells the capacity to migrate and form micrometastases in distant organs. Recent analyses of the mechanisms controlling EMT revealed a significant epigenetic regulatory impact reflecting the reversible nature of EMTs. As several approaches of epigenetic therapy are already under clinical evaluation, including inhibitors of DNA methyl transferase and histone deacetylase, targeting the epigenetic regulation of EMT may represent a promising therapeutic option in the future. Therefore, we undertook this review to reassess the current knowledge on the roles of epigenetic control in the regulation of EMT in human cancer. These recent findings are discussed in view of their implications on future diagnostic and therapeutic strategies.

Contents
1. Introduction
2. The current concept of epithelial-mesenchymal transition
3. EMT in development and in cancer
4. Epigenetic regulation of EMT
5. Therapeutic options targeting epigenetics and EMT
6. Summary and future directions

1. Introduction
Epithelial-mesenchymal transition (EMT) as well the reverse process of mesenchymal-epithelial transition (MET) is essential for development and physiological response to injury (such as wound healing) as well as carcinogenesis (1-3).

Under normal conditions, epithelial cells are linked together as well as to the extracellular matrix environment by different types of intercellular junctions (desmosomes, adherens and tight junctions) enabling tissue maintenance and stability. Recently analyses of the mechanisms controlling EMT revealed a significant epigenetic regulatory impact reflecting the reversible nature of EMTs. As several approaches of epigenetic therapy are already under clinical evaluation, including inhibitors of DNA methyl transferase and histone deacetylase, targeting the epigenetic regulation of EMT may represent a promising therapeutic option in the future. Therefore, we undertook this review to reassess the current knowledge on the roles of epigenetic control in the regulation of EMT in human cancer. These recent findings are discussed in view of their implications on future diagnostic and therapeutic strategies.

Correspondence to: Dr Daniel Neureiter, Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Mülner Hauptstrasse 48, 5020 Salzburg, Austria
E-mail: d.neureiter@salk.at

Key words: epithelial-mesenchymal transition, epigenetics, DNA methylation, histone modification, cancer
2. The current concept of epithelial-mesenchymal transition

According to Kalluri and Weinberg (9) the biological process of EMT is described as follows: i) epithelial cells are tightly integrated in their cellular environment by tight junctions or desmosomes; ii) under the influence of different EMT mediators (such as growth factors or cytokines, discussed in detail below) epithelial cells gain a mesenchymal status, which iii) is associated with different biological properties, particularly the ability to invade and metastasize. EMT refers to a collective series of transcriptional and post-translational events that cause epithelial cells to take on mesenchymal features, thus allowing the cells to separate from the tissue context, lose baso-apical polarity and gain motility (3,10-12) (Fig. 1).

It is of central importance, that EMT processes are reversible so that mesenchymal cells can undergo MET to differentiate back to epithelial phenotypes. This reverse transition plays a key role in the formation of macroscopic metastases in different organs (13).

For experimental approaches it is important to characterize the EMT or MET status of tumor cells to investigate the influence of agonistic or antagonistic acting drugs. Different markers of extracellular (fibronectin, vitronectin) and cellular localization (vimentin, E-cadherin) are suitable to identify the EMT-MET-related differentiation status (1,11,12,14,15) (Table I). Cellular markers are either cytoplasmic matrix proteins (such as E-cadherin, claudins, occludin, desmoplakin) or cytoplasmic proteins (cytokeratins, vimentin or mucins). In particular, the epithelial phenotype is typically characterized by cytokeratin expression which stabilizes the cytoskeleton of epithelial cells. Additionally, these cytokeratins hierarchically classify the epithelial differentiation status depending on the tissue/organ context as described by Mol et al (16).

One of the fundamental molecular aspects of EMT in converting differentiated epithelial tumor cells into de-differentiated, migratory mesenchymal cells is the repression of epithelial genes, such as E-cadherin, which results in the loss of epithelial cell-cell contacts. For tumor progression, the loss of E-cadherin is a central feature in the early stages of metastasis (17-21), further supporting the involvement of an EMT-like process in metastatic tissue invasion. During EMT, E-cadherin is replaced by N-cadherin, a process referred to as ‘cadherin switching’ (22,23).

Additionally, intermediary filaments, such as vimentin or smooth muscle cells are used as mesenchymal markers. The intercellular connection status described by the expression pattern of E-cadherin, claudins, occludins or desmoplakin indicate a tissue-integrative epithelial status, whereas the linkage to the extracellular matrix is mediated by glycoproteins, such as fibronectin and vitronectins connecting the extracellular matrix with cellular integrins.

The initiation of the complex process of EMT is triggered by multiple cellular signaling mechanisms including ‘classical’ developmental pathways, such as Hedgehog, Wnt and Notch, as well as signaling by growth factors including transforming growth factor β (TGFβ), fibroblast growth factor (FGF), epidermal growth factor (EGF), and, platelet-derived growth factor (PDGF) (1,11,12) (Table II). Additionally, epigenetic mechanisms (discussed below) as well as miRNA-based regulation have been reported (24,25). Insight into the underlying mechanism of the transcriptional regulation of EMT came from the initial identification of the transcription factor, Snail (Snail), as a target of the above-mentioned EMT-promoting signaling pathways, which acts as a direct transcriptional repressor of the E-cadherin gene (26,27). In recent years, additional transcription factors have been identified which repress E-cadherin and mediate the transcriptional initiation of EMT: zinc finger protein SnaI2 (Slug) (28), the two-handed zinc finger/homeodomain proteins ZEB1 (δEF1 or ZFHX1A) (29) and ZEB2 (SIP1 or ZFHX1B) (30), the basic helix-loop-helix protein E12/E47 (Tcf3) (31), and Twist (although it is not clear whether the latter directly binds the E-boxes within the E-cadherin promoter).

3. EMT in development and in cancer

EMT represents the intersection of different aspects of human development which are sequential rather than parallel processes (2). During the early phase of human development, EMT is involved in morphogenesis and stem cell plasticity required for correct implantation, gastrulation and organogenesis (32,33). In the adult organism, subsequent processes relying on regulated EMT or MET are tissue maintenance allowing for reconstruction or maintenance of tissue, as well as cell homeostasis after inflammatory or degenerative insults. In the case of chronic inflammatory and degenerative diseases, such as organ fibrosis, the EMT/MET system is over-regulated which may lead to organ insufficiency or failure (34). Finally, another cancer-related function of EMT was ascribed to cancer stem cells which are centrally involved in tumor progression, metastasis and recurrence after therapy (35,36).

The involved molecular mechanisms of EMT are summarized in the following paragraphs for i) morphogenesis, ii) chronic diseases and finally for iii) cancer.

EMT in development. In order to enable cells to move to new localities, EMT (and the opposite process, MET) is a central aspect in the developing embryo and has been shown to contribute initially to implantation, gastrulation and subsequently to the development of somites, chondrocytes, cardiac valves, and to nephrogenesis (37,38). The associated molecular steps regulating EMT are highly conserved: as mentioned above, the key players of EMT are the transcription factors, Snail, Twist and ZEB and their important repressor target, E-cadherin. The primary goals of all these EMT-related processes are loss of cell-cell adhesion and polarity and changes in the cell shape, as well as enhanced cell motility and ‘invasiveness’ during embryonic development for organ maturation as reviewed in detail by Thiery et al (2).

Although the upstream regulatory inputs seem heterogeneous at a first glance, some of the master pathways [such as Hedgehog, Wnt, TGF-β/bone morphogenetic protein (BMP), FGF and EGF] involved in cancer-associated-EMT (Table II) also govern EMT during the different phases of embryogenesis. This emphasizes the biological robustness of these pathways (7) and supports the theory that cancer may be viewed as a deregulated program of development (39). Therefore, it is important to further investigate the role of EMT/MET-related processes in development as this knowledge may be transferred to pathophysiological states, such as chronic disease and carcinogenesis which may subsequently aid in the development of new therapeutic approaches.
Table I. EMT-related changes in protein expression pattern (12,14,15).

<table>
<thead>
<tr>
<th>Upregulation (mesenchymal markers)</th>
<th>Upregulation nuclear localisation</th>
<th>Downregulation (epithelial markers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ N-cadherin</td>
<td>β-catenin</td>
<td>↑ E-cadherin</td>
</tr>
<tr>
<td>↑ Vimentin</td>
<td>Smad-2/3</td>
<td>↓ Desmoplakin</td>
</tr>
<tr>
<td>↑ Fibronectin</td>
<td>NF-κB</td>
<td>↑ Cytokeratin</td>
</tr>
<tr>
<td>↑ MMPs</td>
<td>Smad-1/2, twist</td>
<td>↓ Occludin</td>
</tr>
</tbody>
</table>

Bold indicates the most significant changes in marker expression. EMT, epithelial-mesenchymal transition; MMP, matrix metalloproteinase; NF-κB, nuclear factor κB.

Table II. ‘Classical’ contextual EMT-inducing pathways in human carcinogenesis.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Cancer association</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile acids</td>
<td>Hepatobiliary carcinoma cells</td>
<td>(103,104)</td>
</tr>
<tr>
<td>Bone morphogenetic protein</td>
<td>Tumor cells</td>
<td>(105)</td>
</tr>
<tr>
<td>Environmental and social factors (Nicotine, ultraviolet light)</td>
<td>Tumor cells</td>
<td>(106,107)</td>
</tr>
<tr>
<td>Epidermal growth factor</td>
<td>Tumor cells</td>
<td>(108)</td>
</tr>
<tr>
<td>Estrogens</td>
<td>Breast and ovarian cancer</td>
<td>(109,110)</td>
</tr>
<tr>
<td>Fibroblast growth factor</td>
<td>Tumor cells</td>
<td>(111)</td>
</tr>
<tr>
<td>Hepatocyte growth factor</td>
<td>Liver tumor cells</td>
<td>(112)</td>
</tr>
<tr>
<td>Hypoxia/autocrine motility factor</td>
<td>Ovarian, pancreatic cancer</td>
<td>(113-115)</td>
</tr>
<tr>
<td>Integrins</td>
<td>Tumor cells</td>
<td>(116,117)</td>
</tr>
<tr>
<td>Interleukin-related protein/Interleukin-6</td>
<td>Tumor cells</td>
<td>(118,119)</td>
</tr>
<tr>
<td>Notch</td>
<td>Tumor cells</td>
<td>(110)</td>
</tr>
<tr>
<td>Platelet-derived growth factor</td>
<td>Liver and colon cancer</td>
<td>(120)</td>
</tr>
<tr>
<td>Prostaglandine (2)/cyclooxygenase 2</td>
<td>NSCLC cells</td>
<td>(121,122)</td>
</tr>
<tr>
<td>Scatter factor</td>
<td>Malignant mesothelioma</td>
<td>(123,124)</td>
</tr>
<tr>
<td>Sonic hedgehog</td>
<td>Tumor cells</td>
<td>(105)</td>
</tr>
<tr>
<td>Transforming growth factor-β</td>
<td>Tumor cells</td>
<td>(116)</td>
</tr>
<tr>
<td>Vascular endothelial growth factor</td>
<td>Tumor cells</td>
<td></td>
</tr>
<tr>
<td>WNT</td>
<td>Tumor cells</td>
<td>(125)</td>
</tr>
</tbody>
</table>

EMT, epithelial-mesenchymal transition; NSCLC, non-small cell lung carcinoma.

Figure 1. Overview of the initial steps of metastatic epithelial-mesenchymal transition (EMT) and tissue invasion (1,12,13).
EMT in chronic diseases. Our knowledge regarding EMT in chronic diseases has increased over the last few years, leading to a new comprehension of chronic diseases. Again, since physiological regeneration and reparation share the same molecular mechanism as EMT/MET in development, it is fascinating to hypothesize that EMT/MET may also play a role in chronic disease caused by over-regulated regeneration and inflammation. This idea is supported by different cellular tracing studies indicating that chronic disease-related interstitial fibrosis is produced by myofibroblasts derived not only from orthotopic fibroblasts, but from epithelial cells via EMT (2). For example, hepatocytes or alveolar epithelial cells differentiate into myofibroblastic cells during carbon tetrachloride (CCl4)-induced liver fibrosis or TGF-β treatment, respectively (40,41). Furthermore, endothelial and mesothelial cells have the potency to trans-differentiate into mesenchymal cells relevant for cardiac (42), renal (43) or peritoneal fibrosis (44). As another example, we have previously demonstrated that vascular smooth muscle cells exhibit a reverse molecular epithelial phenotype in human atherosclerosis associated with progressive atherosclerotic lesions (45). The major driving force behind such a type of chronic disease-related fibrosis is TGF-β signaling and the Snail cascade which may be inhibited by Smad7 gene transfer (46), as well as a systemic vitamin D analogue (47) or BMP-7 application in vivo (48). This observation may be useful for future therapeutic approaches aiming at protection from progressive organ fibrosis and the associated end stage organ failure.

EMT in cancer. As recently reviewed in depth by Brabletz (8), the de-differentiation processes mediated by EMT are now accepted as a hallmark of cancer. EMT plays a key role in the initial steps of tumor cell dissemination and metastasis. In this context, EMT is related to a current concept of cancer stem cell, i.e. ‘migrating cancer stem cells’ [as termed by Brabletz et al (5) and Jung et al (49)]. In these models, EMT enables cancer cells to trans-differentiate to mesenchymal cancer cells accompanied by the induction of stem cell-like properties.

Typically, EMT is found locally at the tumor front with a characteristically increased expression of vimentin paralleled by a loss of E-cadherin (50,51). Since EMT is not always obvious in tumor specimens due to the enhanced stromal cellularity at the tumor margin, the relevance of EMT is still under debate (2). Nevertheless, experimental and clinical data on solid tumors, such as breast, colorectal and ovarian carcinoma have revealed that the overexpression of the classical transcription markers, SNAIL1 and SNAIL2, is associated with a worse outcome in terms of relapse or survival (52-54). Additionally, the inhibition of EMT signaling pathways can enhance the efficiency of ‘classical’ targeted therapy regimes in the experimental setting of hepatic, pancreatic or lung cancer (2,55,56). Therefore, detailed topographic analysis of the experimental setting of hepatic, pancreatic or lung cancer can enhance the efficiency of ‘classical’ targeted therapy regimes in an in vitro setting (58). The hierarchical regulatory role of EMT inducers depending on the cancer type should be used as the basis for rational drug selection. Based on the intertwined relationship between EMT processes and cancer stem cells, direct targeting of the latter may also manage the disease-related aspects of EMT in cancer. As an example, a promising CSC-targeting drug, salinomycin, was isolated by Gupta et al form a library of 16,000 small molecules (59) and has yielded interesting preclinical results in several tumor entities (60-64).

Additionally, a systematic approach to influence EMT in cancer progression involves modulating the epigenetic regulation of EMT: in the early 80s Jones et al demonstrated that the differentiation status of cultured cells may effectively be influenced by 5-azacytidine, a hypomethylating agent (65,66). Additionally, it has been shown that the histone-associated chromatin structure, as well as the DNA methylation pattern influence the EMT transcriptional regulation of E-cadherin (26,27,67,68) (described in detail in the following chapter).

4. Epigenetic regulation of EMT

Epigenetic regulatory mechanisms refer to a series of stable but reversible modifications not directly affecting the DNA primary sequence but rather rely on dynamic transcriptional programming effects. Such heritable regulations in the pattern of gene expression are mediated by the DNA methylation of CpG dinucleotides and several post-transcriptional covalent modifications of the NH2-terminal of histone proteins, including acetylation, biotinylation, methylation, phosphorylation and SUMOylation (69). As a general rule, DNA methylation, the di- and trimethylation of H3 lysine 9 (H3K9) and the trimethylation of H3K27 cause chromatin condensation leading to gene silencing mediated by heterochromatin 1 (HP1) and polycomb group (PcG) proteins (70). Several epigenetic events such as global hypomethylation, specific hypermethylation at CpG islands (71,72), as well as aberrations in the histone modification landscape [‘histone onco-modifications’ (73)] have been specifi-
demonstrated that the Twist transcription factor interacts with HDAC1, HDAC2 and the co-repressor mSin3A. Additionally, Yang et al. (77) and cause epigenetic modifications occurring during EMT (76). In several model systems, specific microRNAs and developmental signaling pathways are involved in the regulation of EMT (6). Factors/processes involved in epigenetic control of these pathways/factors are highlighted in gray/italicised (6,16,126-131). Ac, acetylation; EMT, epithelial-mesenchymal transition; H, histone; HDACi, histone deacetylase inhibitor; MET, mesenchymal-epithelial transition; miR, microRNA; m3, trimethylation; DNMTi, DNA methyltransferase inhibitor; Shh, sonic hedgehog.

Figure 2. Overview of molecular regulators of EMT. Two negative feedback loops are centrally involved in the dynamic regulation of epithelial vs. mesenchymal cell phenotypes (1,2). Additionally, specific microRNAs and developmental signaling pathways are involved in the regulation of EMT (6). Factors/processes involved in epigenetic control of these pathways/factors are highlighted in gray/italicised (6,16,126-131). Ac, acetylation; EMT, epithelial-mesenchymal transition; H, histone; HDACi, histone deacetylase inhibitor; MET, mesenchymal-epithelial transition; miR, microRNA; m3, trimethylation; DNMTi, DNA methyltransferase inhibitor; Shh, sonic hedgehog.

Figure 2. Overview of molecular regulators of EMT. Two negative feedback loops are centrally involved in the dynamic regulation of epithelial vs. mesenchymal cell phenotypes (1,2). Additionally, specific microRNAs and developmental signaling pathways are involved in the regulation of EMT (6). Factors/processes involved in epigenetic control of these pathways/factors are highlighted in gray/italicised (6,16,126-131). Ac, acetylation; EMT, epithelial-mesenchymal transition; H, histone; HDACi, histone deacetylase inhibitor; MET, mesenchymal-epithelial transition; miR, microRNA; m3, trimethylation; DNMTi, DNA methyltransferase inhibitor; Shh, sonic hedgehog.

Figure 2. Overview of molecular regulators of EMT. Two negative feedback loops are centrally involved in the dynamic regulation of epithelial vs. mesenchymal cell phenotypes (1,2). Additionally, specific microRNAs and developmental signaling pathways are involved in the regulation of EMT (6). Factors/processes involved in epigenetic control of these pathways/factors are highlighted in gray/italicised (6,16,126-131). Ac, acetylation; EMT, epithelial-mesenchymal transition; H, histone; HDACi, histone deacetylase inhibitor; MET, mesenchymal-epithelial transition; miR, microRNA; m3, trimethylation; DNMTi, DNA methyltransferase inhibitor; Shh, sonic hedgehog.

A set of transcription factors has been mechanistically linked to the induction of the EMT program, including Twist, Snail (Snail), Snai2 (Slug) as mediators of the molecular alterations occurring during EMT (76). In several model systems, epigenetic modifications have been shown to contribute to the repression of epithelial genes. As shown by Lin et al. (77), Snail recruits the histone lysine-specific demethylase 1 (LSD1) (KDM1A, AOF2) which removes dimethylation of Lys4 on histone H3 (H2K4m2) and mediates the transcriptional repression of Snail target genes, such as CDH1. The short-hairpin RNA-mediated depletion of LSD1 results in partial re-expression of epithelial genes associated with increased levels of H3K4m2 at the CDH1 promoter. These EMT-inducing transcription factors also interact with HDAC1, HDAC2 and the co-repressor mSin3A (74) via their SNAG N-terminal domain as well as polycomb protein repressive complex (PRC2) (77) and cause epigenetic silencing of the CDH1 promoter. Additionally, Yang et al. (78) demonstrated that the Twist transcription factor interacts with the monomethyltransferase SET8 which can function both as a repressor (78) or inducer (80) of gene expression. Interestingly, following the interaction of TWIST with SET8, the latter acts as a dual epigenetic modifier on the promoters of E- and N-cadherin to induce the expression of N-cadherin and the repression of E-cadherin via its H4K20 monomethylation activity (78).

As Snail interacts with several repressor complexes including HDAC, PRC2 and Ajuba-PRMT5 (74,77), Snail causes bivalent histone modifications (e.g., coexistence of H3K4m3 and H3K27m3) which render affected genes susceptible to reactivation (81). This is of particular interest as it explains the reversible nature of EMT which, under certain circumstances, can be reversed via MET to generate (e.g., metastasized) cells with epithelial characteristics (1,13).

A large body of evidence demonstrates that the miRNA-200 family and miRNA-205 play an important regulatory role in EMT (82,83). In the context of the epigenetic regulation of EMT, it was found that the CpG island near the miRNA-200c and miRNA-141 transcription start is unmethylated in miRNA-expressing tumor/normal cells and is heavily methylated in miRNA-negative and invasive tumor cells. miRNA expression is further facilitated by the enrichment of chromatin-permissive histone modifications (H3 acetylation and H3K4 trimethylation) (84). Likewise, Davalos et al. (85) demonstrated that in epithelial cancer cell lines, the 5-CpG islands of miRNA-200 family members are unmethylated, whereas the hypermethylation-mediated silencing of these miRNAs was found in transformed mesenchymal cells. The reversibility of this methylation state mediates the shift between EMT and MET (85). Similar results were obtained in bladder cancer (86) and breast cancer cell lines (87). It was further shown that ectopic miRNA-200b and -200c expression inhibits ZEB1 translation and disrupts ZEB1-histone deacetylase repressor complexes. This results in increased histone acetylation and E-cadherin expression. Interestingly, the chemotherapeutic resistance of these breast cancer cells was increased by enhanced p53-mediated apoptotic pathways (88).
5. Therapeutic options targeting epigenetics and EMT

The overall aim of an epigenetic therapy is to ‘renew’ the epigenome of the cells by reconstituting the normal expression level of epigenetically misregulated genes (89). Our understanding of the association between modifications of DNA or histones via methylation or acetylation and human diseases has increased over the years, leading to the development of epigenetically functioning drugs, some of which have been approved by the US Food and Drug Administration for the treatment of human cancer (90). As recently reviewed by us, the combination regimen of DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) yielded promising results in the treatment of myelodysplastic syndrome, a clonal hematological disease (91). Additionally, clinical trials (up to phase IIb) have been performed for other hematological diseases, such as non-Hodgkin's lymphoma (particularly T-cell lymphoma and diffuse large B-cell lymphoma) and acute myeloid leukemia (90). Nevertheless, the clinical application of epigenetic drugs for solid tumors is still in the pilot phase for e.g., non-small-cell lung cancer or only used as experimental therapy in advanced, recurrent or refractory malignancies (90,92).

With respect to the molecular effects of these drugs, the detailed mechanisms of epigenetic therapies were primarily focused on their anti-proliferative and pro-apoptotic effects as well as anti-angiogenic potency as supported by many experimental studies in vitro and in vivo (93,94). Of particular interest, recent investigations revealed that acetylation and de-acetylation are centrally integrated in a cellular network of regulations: the ‘acetylome’ which affects RNA splicing, DNA damage repair, cell cycle control, nuclear transport, actin remodeling, ribosome and chaperone functions (91,95). In our previous studies, we have shown that the cinnamic hydroxamic acid pan-DACi panobinostat (LBH589), a novel potent inhibitor of all HDAC enzymes, influences not only proliferation and apoptosis (96), but also the expression of markers of differentiation and EMT, particularly in an in vivo xenograft model of human hepatoma (97) by upregulation of epithelial markers (cytokeratins) and downregulation of mesenchymal markers (vimentin). Additionally, we demonstrated that the combination of the histone deacetylase inhibitor, SAHA, and the methyltransferase inhibitor, Zebularine, altered the patterns of differentiation in pancreatic cancer models (98). Furthermore, treatment of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) with the DNA methylation inhibitor, decitabine (trade name: Vidaza), induced different morphological changes (such as colony forming capacity) and the expression of hematopoietic differentiation markers (99).

These experimental findings are significant since the differentiation status and the associated EMT/MET status of tumor cells is modulated by classical chemotherapy, selecting transitional, stem cell-like tumor cells which are possibly chemotherapy resistant and are responsible for the clinical recurrence as hypothesized by Todaro et al (100). Therefore, the tumor differentiation status should be characterized in detail prior to, during and after tumor treatment in order to obtain ‘personalized’ predictive, prognostic and therapeutic stratifications. For example, Handra-Luca et al (50) showed that the expression of the ‘basic’ mesenchymal marker, vimentin, in classical pancreatic ductal adenocarcinoma is associated with a worse outcome of patients using immunohistochemistry on a tissue microarray of 387 patients. Additionally, the same group demonstrated that the loss of E-cadherin protein expression was linked to a worse survival of patients with resectable pancreatic adenocarcinomas (51). As clinicopathological investigations of epigenetic treatment and its impact on EMT/MET in cancer specimen are lacking, to date, only experimental data support the theory that epigenetic treatment of cancer cell lines in vitro and in vivo directly influences the Twist-Snail/ZEB-E-cadherin axis and indirectly influences EMT inducers such as Wnt-TGFβ-BMP or other classical pathways (as described in chapter 4). Another interesting recent approach was presented by Ivanova et al (101) who investigated the methylation status of different gastric cancer cell lines, revealing that DNA methylation predicts the responsiveness of these cell lines to treatment with cisplatin, a standard chemotherapy for gastric cancer. Additionally, one of the candidate genes, BMP-4, was epigenetically upregulated in cisplatin-resistant gastric cancer cell lines; therefore, the authors speculated that targeting BMP-4 may improve the sensitivity of such cancer cells to chemotherapy (101). Taken together, several tumorigenic properties initiated/driven by EMT such as invasion, metastasis and drug resistance may be targeted by means of epigenetic therapeutic approaches as illustrated in Fig. 3.
6. Summary and future directions

Our understanding of the role of EMT/MET-related processes in different phases of human development, homeostasis, regeneration and reparation, as well as carcinogenesis has dramatically increased. The central molecular pathways associated with the downstream effects on the most important EMT phenotype, i.e., loss of E-cadherin and vimentin expression have been well described. The direct and indirect inducers of EMT/MET are known and we are beginning to decipher their integrated regulatory crosstalk and feedback mechanisms. As reviewed in this article, the role of epigenetics in EMT is being increasingly strengthened by recent experimental data. Nevertheless, further research is required to fully uncover the whole spectrum of the epigenetic regulation of EMT/MET in human cancer. Based on these insights, novel epigenetic therapies that target the EMT-related processes in tumor progression may become feasible.

With respect to basic cell culture experiments showing the influence of epigenetics on therapy responsiveness or resistance (101), recent data demonstrate that the epigenetic pre-treatment of human cancer cells induces differentiation and, therefore, presents us with a chance to improve the efficiency of classical chemotherapies (102). Therefore, we hypothesize that epigenetic therapy may stabilize the epithelial tumor phenotype or induce MET which may subsequently improve tumor sensitivity to conventional chemotherapy (Fig. 3). However, this hypothesis requires further confirmation in appropriate pre-clinical studies and large prospective clinical trials.

References

