Abstract. This is the case report of a 65-year-old man who experienced left calf pain after spraining his left ankle. On magnetic resonance imaging (MRI), a well-defined fluid collection was identified, with low intensity on T1-weighted images and very high intensity on T2-weighted images. On certain slices, a soft tissue mass in the proximal fibula was identified. Following resection of the fibular lesion, histological examination confirmed a benign tumor with cystic elements, described in the current pathology and radiology literature as juxta-articular myxoma. This is a rarely encountered but well-recognised cystic lesion, commonly developing around the knee, that is often misdiagnosed as ganglion cyst, synovial lipoma, lipoma arborescens and pigmented or non-pigmented villonodular synovitis. Given its more cellular nature and thicker encapsulation, juxta-articular myxoma may be differentiated from ganglion cyst on MRI with a high index of suspicion, and it is crucial that it is recognized due to its high rate of recurrence. In the present case, the localization of this lesion within the fibula was uncommon, and there was also a soft tissue mass identified outside the bone. Wide resection of the lesion was performed. Recovery was uneventful and the patient remains symptom- and recurrence-free at 8-months follow-up.

Introduction

Ganglia, caused by mucinous transformation of periarticular connective tissue, are the most common cystic lesions found around the joints, usually occurring near joints, tendons and tendon sheaths. Intraosseous ganglia are less common, but are macroscopically and histologically identical to soft tissue ganglia, consisting of a multicellular, thick, fibrous walled cyst-like structure filled with mucin-rich fluid. The clinical characteristics and pathogenesis of these ganglia are diverse (1-3).

Discussion

An intraosseous ganglion cyst is an uncommon, benign cystic bone lesion occurring in close association with an articular...
A RARE FIBULAR JUXTA-ARCITULAR GANGLION: CASE REPORT AND LITERATURE REVIEW

surface (5). However, intraosseous ganglion cysts of the fibula are very uncommon.

Male patients have a minor preponderance for this disease. The age distribution is very wide (18-86 years according to the literature) and the majority of the patients are middle-aged (6). The aetiology and pathogenesis of intraosseous ganglions remain unknown, although there are several theories on the pathogenesis of the cyst (7,8).

Wei et al reported several cases supporting this type of theory (8). Schajowicz et al (7) hypothesized it may be caused by intramedullary metaplasia followed by mucoid degeneration with intraosseous cyst formation. Altered mechanical stress may also lead to intramedullary vascular disturbance and aseptic necrosis. Subsequently, the revitalization of these necrotic areas leads to fibroblastic proliferation and mucoid degeneration. Crane hypothesized the lesion may be caused by leakage of synovial fluid following injury of the cartilaginous surface (9). The majority of the authors presently support these two previously mentioned theories, although these theories cannot fully explain all the cases. Thus, further investigation is required.

Schajowicz et al (7) suggested there are two types of intraosseous ganglion: The first is a primary or idiopathic
type that arises de novo within the bone; the second type of intraosseous ganglion is considered to occur when there is penetration of an extraosseous lesion into the underlying bone.

The diagnosis of intraosseous ganglion is not difficult, but it must be differentially diagnosed from a unicameral bone cyst, aneurysmal bone cyst, chondromyxoid fibroma, Brodie's abscess, giant-cell tumor, fibrous dysplasia and pigmented villonodular synovitis. These patients may present with persistent pain that worsens when using the affected region. Physical examination may reveal edema with tenderness; however, there are usually no abnormal findings. On radiographs, the intraosseous ganglia appear as well-defined, lytic, oval, or round lesions located in the juxta-articular (subchondral) region, with or without cortical expansion and soft tissue extension. The majority of the lesions are small (1-2 cm). Communication between the cyst and the joint space has been reported. However, as in the present case, the cyst may occasionally be larger than usual, without an obvious communication with the joint, or may even be located outside the joint.

Macroscopically, the intact cyst is usually smooth or slightly lobulated and bulging, with a white, fibrous outer surface. The external surface may appear gray-blue if the wall is thinned. The microscopic examination of the intraosseous ganglion is identical to its soft tissue counterpart, revealing a cyst wall of fibrous tissue and fibrocytes, with areas of collagenous material (5).

The differential diagnosis of intraosseous ganglion includes unicameral bone cyst, chondromyxoid fibroma, Brodie’s abscess, giant-cell tumor, fibrous dysplasia and pigmented villonodular synovitis. Our patient underwent an open biopsy, and the pathological examination revealed a benign tumor. The optimal treatment of symptomatic intraosseous ganglia is surgical excision by curettage followed by bone grafting to prevent recurrence and the risk of collapsing fracture (9). As the lesion was wide and there was a high risk of pathological fracture after curettage, wide resection of the fibula was performed. At 3 months after surgery, the patient was able to walk normally and had no complaints of pain.

Intraosseous ganglia are uncommon and, to the best of our knowledge, there are no reported cases in the fibula. However, this type of lesion must be included in the differential diagnosis of calf pain. Imaging in the form of an MRI is crucial for diagnosis and operative planning, accompanied with histopathology to confirm the diagnosis. Surgical curettage followed by bone grafting is the treatment of choice. However, if the lesion is extensive, resection must be considered.

References