Bioactive components of *Glycyrrhiza uralensis* mediate drug functions and properties through regulation of CYP450 enzymes

HAO CHEN¹*, XIAOMEI ZHANG²*, YIFAN FENG², WEN RUI², ZHONGFENG SHI² and LIRONG WU³

¹Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012; ²Center Laboratory, Guangdong Pharmaceutical University; ³Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China

Received June 24, 2013; Accepted April 14, 2014

DOI: 10.3892/mmr.2014.2331

Abstract. *Glycyrrhiza uralensis* (*G. uralensis*) is a common medicinal plant that has mainly been used to modulate the pharmacological activity of herbal medicines. Although *G. uralensis* has been shown to affect the expression and activity of the key metabolic enzyme cytochrome P450 (CYP450), the detailed mechanism of this process has yet to be elucidated. The present study aimed to elucidate the effects of bioactive components of *G. uralensis* on different isoforms of CYP450 and determine the ability of these components to modulate drug properties. In the present study, mRNA levels of CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were investigated by quantitative polymerase chain reaction (qPCR) in HepG2 cells following treatment with the major bioactive compounds of *G. uralensis*. The activity of CYP450 enzymes was investigated in human liver microsomes using the cocktail probe drug method, and the metabolites of specific probes were detected by UPLC-MS/MS. The effects of *G. uralensis* on CYP450 were assessed using bioinformatics network analysis. Several compounds from *G. uralensis* had various effects on the expression and activity of multiple CYP450 isoforms. The majority of the compounds analysed the inhibited expression of CYP2D6 and CYP3A4. Several CYP isoforms were differentially modulated depending on the specific compound and dose tested. In conclusion, the present study suggested that *G. uralensis* influenced the expression and activity of CYP450 enzymes. Therefore, caution should be taken when *G. uralensis* is co-administered with drugs that are known to be metabolized by CYP450. This study contributed to the knowledge of the mechanisms by which this medicinal plant, commonly known as licorice, modulates drug efficacy.

Introduction

Cytochrome P450 (CYP450) enzymes constitute a superfamily of membrane-bound heme proteins that catalyse the oxidative metabolism of a variety of endogenous compounds, including steroids, fatty acids, and prostaglandins (1), and exogenous compounds, including drugs, carcinogens, agrochemicals (2-4), and environmental pollutants (5-7). Seven human isoforms of CYP (CYP1A2, -2C9, -2C18, -2C19, -2D6, -2E1 and -3A4) metabolize >90% of drugs currently used in the clinic (8). Alternatively, certain drugs are able to modify the expression and activity of CYP450 enzymes, thereby changing drug efficacy and pharmacokinetics. Various *in vitro* models have been used to assess CYP induction, including precision-cut liver slices (9,10), primary hepatocytes (11,12), and reporter gene constructs (13,14). In particular, HepG2 cells retain the expression of all human CYPs (15) and are frequently used to evaluate the effects of xenobiotics on CYP450 expression. Additionally, the cocktail method is the most predominant technique used for studies on CYP450 conducted on human liver microsomes (HLMs).

Medicinal plants have been used to treat numerous types of diseases for thousands of years in China. In particular, the use of medicinal plants combined with conventional medicine is common in the treatment of chronic diseases, cancers, immunological disorders and infectious diseases. However, in contrast to the popular presumption that ‘natural is safe’, medicinal plants may have significant side effects. Additionally, there is an increasing concern for the risk of drug-drug interactions when medicinal plants are administered concomitantly with conventional medicines (16-19).

Glycyrrhiza uralensis (*G. uralensis*), also known as Chinese licorice, is a Traditional Chinese Medicine (TCM) that has been used in the clinic for centuries. Its functions include regulating drug properties, improving spleen function and blood circulation and reducing cough. The main bioactive components

Correspondence to: Dr Zhongfeng Shi, Center Laboratory, Guangdong Pharmaceutical University, 280 Waihuan East Road, High Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
E-mail: shizhf@139.com

Dr Lirong Wu, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, 280 Waihuan East Road, High Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
E-mail: 30872950@qq.com

*Contributed equally

Key words: cytochrome P450, *Glycyrrhiza uralensis*, qPCR, cocktail assay, drug efficacy regulation
of *G. uralensis* are triterpene saponins and various types of flavonoids, including glycyrrhetinic acid (GA), glycyrrhizinic acid (GL), liquiritigenin (L), isoliquiritigenin (IL), liquiritin (LG) and licochalcone A (LA). These components possess various biological activities, including antiulcer, anti-inflammatory, anti-allergic, antichrombotic, anti-diabetic, hepatoprotrophic and neuroprotective activities (20,21).

Results of previous studies have shown that *G. uralensis* or its components activate the nuclear receptor PXR, inducing CYP3A and affecting lidocaine pharmacokinetics (22), and inhibit CYP2E1 expression when administered prior to carbon tetrachloride, exerting a protective effect on liver injury (23). However, the specific CYP450 isoforms involved and the effects of specific *G. uralensis* components have yet to be identified. Thus, *G. uralensis* has not currently been adopted for common use in clinical practice.

The present study aimed to investigate the effects of the main bioactive constituents of *G. uralensis* on the expression and activity of CYP isoforms.

Materials and methods

Chemicals. GA and LG were obtained from the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China). GL, L, IL, and LA were purchased from Shanghai Tauto Biotech (Shanghai, China). All the above constituents of *G. uralensis* were dissolved in DMSO (MP Biomedicals, Strasbourg, France). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma-Aldrich Co., St. Louis, MO, USA) was dissolved in PBS (pH 7.4). Melatonin, dextromethorphan, coumarin and omeprazole are purchased from Wako (Osaka, Japan). Tolbutamide, chlozoxazone, phenacetin, coumarin and omeprazole are purchased from Wako (Osaka, Japan). All the above constituents of *G. uralensis* were dissolved in DMSO (MP Biomedicals, Strasbourg, France). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma-Aldrich Co., St. Louis, MO, USA) was dissolved in PBS (pH 7.4). Melatonin, dextromethorphan, coumarin and omeprazole are purchased from Wako (Osaka, Japan). Tolbutamide, chlozoxazone, phenacetin, coumarin and omeprazole are purchased from Wako (Osaka, Japan). All the above constituents of *G. uralensis* were dissolved in DMSO (MP Biomedicals, Strasbourg, France). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma-Aldrich Co., St. Louis, MO, USA) was dissolved in PBS (pH 7.4). Melatonin, dextromethorphan, coumarin and omeprazole are purchased from Wako (Osaka, Japan). Tolbutamide, chlozoxazone, phenacetin, coumarin and omeprazole are purchased from Wako (Osaka, Japan). All the above constituents of *G. uralensis* were dissolved in DMSO (MP Biomedicals, Strasbourg, France).

Cell culture and cytotoxicity assay. Human hepatoma HepG2 cells were obtained from the Chinese Academy of Sciences Committee Type Culture Collection Cell Bank/CAS Shanghai Institute for Biologic Science Cell Resource Center (Shanghai, China) and maintained in Williams’ Medium E supplemented with 10% fetal calf serum, 100 U/ml penicillin G, and 100 µg/ml streptomycin. The cells were maintained in 25-cm² flasks at 37°C in a humidified incubator with 5% CO₂.

The cytotoxic effects of the compounds on HepG2 cells were evaluated by measuring the metabolic activity using the MTT assay. Cells were grown in 96-well plates (~1x10⁴ cells/well) for 24 h. The medium was replaced with fresh medium containing serial dilutions of the test compound (0-100 µM). For all treatments, the final concentration of DMSO did not exceed 0.01% (v/v). Following incubation for 24 h, the medium was removed, 20 µl MTT (5 mg/ml in PBS) was added to each well, and the cells were incubated for an additional 4 h at 37°C at 5% CO₂. The supernatant was then removed, and 150 µl DMSO was added to each well. The absorbance at 490 nm was recorded using a BIO-TEK spectrophotometer.

HLM metabolic assay. HLMs were obtained from iPhase Pharmaceutical Services (Beijing, China). Microsomes were incubated with 500 µg/ml human microsomal protein in 0.1 M potassium phosphate buffer (pH 7.4), 1 mM nicotine amide dinucleotide phosphate (NADPH), and substrates at the indicated concentrations. Substrates and their final concentration for incubation were as follows: Melatonin (6 µM), coumarin (4 µM), tolbutamide (30 µM), omeprazole (20 µM), dextromethorphan (0.6 µM) and chlozoxazone (30 µM). The first dilution of the substrate was produced in appropriate solvents, i.e., methanol (melatonin, coumarin, omeprazole), water (dextromethorphan), DMSO (tolbutamide) or 60 mM potassium hydroxide solution (chlozoxazone), and subsequent dilutions were produced in 0.1 M phosphate buffer (pH 7.4). The final amount of solvent in the incubation mixture was <0.05% (v/v). The final concentration of each compound tested (i.e., GL, GA, L, IL, LG and LA), as well as the mixture containing all the compounds at the same ratio (GC), was 25 µM. The reaction mixture, at a final volume of 250 µl, was pre-incubated for 2 min at 37°C in a water bath prior to initiation of the reaction by the addition of NADPH. Following incubation for 20 min, the reaction was terminated by the addition of 100 µl acetonitrile containing 0.5 µM
phenacetin as an internal standard for each drug metabolite. The sample was then cooled in an ice bath to precipitate the protein. The mixture was vortexed and centrifuged at 14,000 x g for 10 min. The supernatant was analyzed using ultra performance liquid chromatography time of flight mass spectrometry (UPLC/TOF-MS).

Cocktail assay. For the cocktail assay, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The analytical column was a Waters ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 x 5 mm; Waters, Milford, MA, USA) with a C18 1.7 µm VanGuard 3/PK 2.1 x 5 mm pre-column (Waters). The flow rate was 0.35 ml/min, and the column temperature was 30°C. The eluents used were (A) aqueous 1% formic acid and 10 mM ammonium acetate and (B) methanol. The gradient elution was performed with 5% eluent A from 0 to 4 min and 80% eluent A from 4 to 4.5 min.

Of the compounds in the cocktail substrate (i.e., melatonin, coumarin, omeprazole, dextromethorphan, tolbutamide and chlozoxazone), only the metabolite of chlozoxazone was able to be detected in negative ion mode, while the remaining metabolites were detected using the positive ion electrospray mode. The data were collected on a Micromass oa-Q-Tof (Waters) equipped with an electrospray ionization source. Basic parameter conditions included capillary, sample cone, and extraction cone voltages of 3500, 30, and 2 V, respectively; desolvation and nebulization N2 flows of 450 and 45 l/h, respectively; and desolvation and source temperatures of 350 and 120°C, respectively. The mass spectrometer and UPLC systems were operated using Micromass MassLynx4.1 software. Chromatographic traces of protonated metabolites of CYP-specific substrates were extracted from total ion chromatograms. The masses of metabolites extracted at various retention times are shown in Table II.

Network of influence on metabolic enzymes of G. uralensis. In recent years, numerous studies (25-27) have shown that the different bioactive substances found in G. uralensis are metabolized by different CYP450 isoforms; at the same time, they are able to inhibit or activate the various isoforms of CYP450 to different degrees. In order to obtain a comprehensive understanding of the influence of G. uralensis on metabolic enzymes, a bioinformatics network of the influence of G. uralensis on metabolic enzymes through the PubMed literature database was created using Cytoscape software (28). The 47 documents selected through keyword retrieval from the PubMed database were imported to the Agilent Literature Search module of the Cytoscape software. A network figure was automatically generated by Cytoscape, and nodes and edges of the network were modified manually according to detailed information from the study abstracts. From this, a new network of the influence

Table I. Primers used for the analysis of gene expression by qPCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primers</th>
<th>Reverse Primers</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GADPH</td>
<td>TCTCCCCCTCCTCACAGTTGC</td>
<td>AAGCCCCAGACGACAGAC</td>
<td>143</td>
</tr>
<tr>
<td>CYP1A2</td>
<td>AGCTTCTCCTGGCCTCTGC</td>
<td>GGAATTTTCAGGCCCCCTTTC</td>
<td>88</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>CGCATCCCTAAGGGACGA</td>
<td>TCCCCAGACGGCCCTCCTC</td>
<td>68</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>GCCAGAGATGCCTACATGGA</td>
<td>GGCAACGAGGGGTGATGAA</td>
<td>64</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>CAGAGAAATGCTAGCAGTTT</td>
<td>GTCAAGATACTCCCATGCTAGCAGCT</td>
<td>78</td>
</tr>
</tbody>
</table>

CYP, cytochrome P; bp, base pairs; GADPH, glyceraldehyde 3-phosphate dehydrogenase; qPCR, quantitative polymerase chain reaction.

Table II. Substrates, CYP-specific model reactions and substrate-extracted ions in the cocktail.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>CYP</th>
<th>Reaction</th>
<th>Metabolite</th>
<th>Extracted ion (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melatonin</td>
<td>1A2</td>
<td>6-Hydroxylation</td>
<td>6-OH-MEL</td>
<td>249</td>
</tr>
<tr>
<td>Coumarin</td>
<td>2A6</td>
<td>7-Hydroxylation</td>
<td>7-OH-COU</td>
<td>163</td>
</tr>
<tr>
<td>Amodiaquine</td>
<td>2C8</td>
<td>Desethylation</td>
<td>deEt-AMO</td>
<td>328</td>
</tr>
<tr>
<td>Tolbutamide</td>
<td>2C9</td>
<td>Methylhydroxylation</td>
<td>OH-TOL</td>
<td>287</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>2C19</td>
<td>5-Hydroxylation</td>
<td>OH-OME</td>
<td>362</td>
</tr>
<tr>
<td>2C19</td>
<td>3A4</td>
<td>Demethylation</td>
<td>Dem-OME</td>
<td>332</td>
</tr>
<tr>
<td>3A4</td>
<td></td>
<td>Sulfoxidation</td>
<td>SO2-OME</td>
<td>362</td>
</tr>
</tbody>
</table>

CYP, cytochrome P; MEL, melatonin; COU, coumarin; AMO, amodiaquine; TOL, tolbutamide; OME, omeprazole.
of *G. uralensis* on metabolic enzymes was produced, and a macroscopic overview of the effect of *G. uralensis* on metabolic enzymes was obtained.

Statistical analysis. Each experiment was performed twice. One-way analysis of variance (ANOVA) was used to analyze differences between samples, and *P*<0.05 was considered to indicate statistically significant differences. The data for activity of the CYP450 enzyme were presented as the fold change compared with the control sample.

Results

Effect of components of *G. uralensis* on HepG2 cell viability. To determine whether GL, GA, L, IL, LG, LA and GC were cytotoxic, cell viability assays were performed. HepG2 cells were treated with serial dilutions (0-50 µM) of GL, GA, L, IL, LG, LA or GC for 24 h, and the cell survival rate was evaluated. Cell viability was not affected by any of the compounds at concentrations <50 µM when compared with the control cells (Fig. 1). Therefore, concentrations of 50 and 25 µM were used for all experiments on HepG2 cells.

Expression of CYP1A2 mRNA following treatment with components of *G. uralensis*. The CYP450 superfamily of drug metabolism enzymes has a vital role in metabolizing most drugs. CYP1A2 accounts for >10% of hepatic CYP enzymes and is known to be regulated by the arylhydrocarbon receptor (AhR). Additionally, CYP1A2 is involved in the metabolism of numerous steroid hormones and procarcinogens. The present study assessed whether GL, GA, L, IL, LG, LA and GC modulate CYP1A2 expression. HepG2 cells were treated with the above-mentioned compounds at 25 and 50 µM, respectively, for 24 h, and CYP1A2 mRNA levels were analyzed using qPCR. No significant difference was observed following treatment with LA (Fig. 2). By contrast, treatment with 25 µM GL, L or IL induced a significant increase in CYP1A2 expression compared with the controls. However, when the cells were treated with 50 µM GL, L or IL, CYP1A2 mRNA levels were significantly down-regulated; GA inhibited CYP1A2 expression in a dose-dependent manner; however, the inhibitory effects of LG and GC were not dose-dependent. The results indicated that the latter compounds may interact with each other to modulate CYP1A2 expression.

Expression of CYP2D6 mRNA following treatment with *G. uralensis*. The effects of the components of *G. uralensis* on CYP2D6 expression were investigated. CYP2D6 is known to be polymorphic, and 30% of CYP-metabolized drugs are metabolized by CYP2D6. The results showed that GL, GA, L, IL, LG and LA significantly inhibited the expression of CYP2D6 transcripts (Fig. 3). However, following treatment with GC, a mixture of all the compounds, the expression of CYP2D6 was increased. This may be due to interactions between the different components of the mixture.

Expression of CYP2E1 mRNA following treatment with *G. uralensis*-derived compounds. Expression of CYP2E1 mRNA did not differ significantly following treatment with GL. However, exposure to 25 µM GA, L or GC inhibited...
the expression of CYP2E1 transcripts, while 50 µM GA, L or GC significantly increased the expression of CYP2E1.

Previous studies showed that the hepatoprotective effect of these compounds may be due to their ability to block the bioactivation of carbon tetrachloride by inhibiting P450 2E1 activity and expression (29-31). The present study showed that GL did not inhibit CYP2E1 expression (Fig. 4). However, IL and LG inhibited the expression of CYP2E1 transcripts in a dose-dependent manner. GA and L inhibited the expression of CYP2E1 transcripts when used at a low concentration (25 µM), which is consistent with the study by Jeong et al (32), which showed that GA was able to inhibit the expression and activity of P450 2E1 and had protective effects against carbon tetrachloride-induced hepatotoxicity; however, they significantly increased CYP2E1 expression at a high concentration (50 µM). However, when HepG2 cells were treated with a mixture of the six bioactive constituents of G. uralensis (25 µM), the expression of CYP2E1 was slightly inhibited.

Expression of CYP3A4 mRNA following treatment with G. uralensis-derived compounds. CYP3A4, the major isoform of the CYP3A subfamily in humans, is the most important drug-metabolizing enzyme. As shown in Fig. 5, GL and GA increased the expression of CYP3A4 at a concentration of 50 µM, and GL, GA, L, IL, LG LA and GC modulated the expression of CYP3A4 in a dose-dependent manner.

CYP450 activity in HLMs following treatment with compounds derived from G. uralensis. Based on preliminary experiments in HLMs (33), appropriate probe substrates were selected as follows: Melatonin (CYP1A2), coumarin (CYP2A6), amodiaquine (CYP2C8), tolbutamide (CYP2C9), omeprazole (CYP1C19 and CYP3A4), dextromethorphan (CYP2D6) and chlozoxazone (CYP2E1). Cocktail activity assays were then performed in cultures of HLMs to assess all seven P450 enzymes simultaneously following treatment with the bioactive compounds from G. uralensis for 20 min. Compared with the
control sample, IL and GC strongly inhibited the activity of CYP2C8 and all the compounds derived from *G. uralensis* as well as their mixture (GC) significantly inhibited the activity of CYP2C19 (Fig. 6). LG showed the highest activity, inducing a 3-fold increase in the expression of the CYP2D6 enzyme.

When detecting the metabolites of certain probes following treatment of HLMs with the bioactive compounds from *G. uralensis*, the activity of CYP1A2, -2A6, -2C9, -2E1, and -3A4 were not able to be determined.

Network of influence of bioactive compounds from *G. uralensis* on metabolic enzymes. The overview of the network of influences of *G. uralensis*-derived compounds on metabolic enzymes is shown in Fig. 7; this network was created through integration of data found in the literature and the results of the present study. The network was then analysed using the network analysis module in Cytoscape (Fig. 8). This analysis provided additional evidence that the compounds GL, GA, L, and IL, derived from *G. uralensis*, had effects on metabolic enzymes, particularly CYP450 family enzymes, and CYP1A, -2D, -2C, -2E, -3A, and -2A were most susceptible to regulation by the bioactive components in *G. uralensis*.

Discussion

The present study aimed to reveal the correlation between *G. uralensis* and CYP450 enzymes. Consequently, the effect of the major bioactive constituents of *G. uralensis* on the expression of CYP isoforms in HepG2 cells was assessed using qPCR and the effect of the compounds on the activity of certain CYP450-associated enzymes in human liver microsomes was assessed using the cocktail assay.
CYP450s constitute a superfamily of membrane-bound heme proteins that catalyze the oxidative metabolism of a variety of endogenous compounds and environmental pollutants. Seven human isoforms of CYP are responsible for metabolizing >90% of drugs currently used in the clinic (8). Alternatively, certain drugs are able to modify the expression and activity of CYP450 enzymes, thereby changing drug efficacy and pharmacokinetics. Therefore, it is highly important to study the significance of CYP enzymes in the regulation of drug efficacy.

The current medicinal applications of G. uralensis include regulating drug properties, improving spleen function and blood circulation as well as reducing cough. Regulating the activity of other drugs is the unique pharmacological trait of G. uralensis and is documented as an important concept in TCM. It is the most widely used medicinal plant in TCM that is co-administered with other medicines mainly due to its function of regulating the activity of drugs. With the wide use of G. uralensis, it is becoming increasingly important to be cautious about the interactions between G. uralensis and other drugs to avoid reduction in efficacy and increased side effects of co-administered drugs. However, studies in this field are rare. Previous studies (34) have shown that G. uralensis or its components were able to affect the activity of certain isoforms of CYP450 and pharmacokinetics of drugs. However, the specific isoforms of CYP450 involved and the effects of specific components of G. uralensis remain to be elucidated.

Consistent with the results of the present study, it has been reported that aqueous extracts of G. uralensis are able to activate the nuclear receptor PXR, and activated PXR is known to induce CYP3A expression (22,35). Additionally, it has been demonstrated that GA significantly inhibits the activity of CYP3A4 in HLMs (36,37). The signalling mechanisms mediating these processes may be diverse. Furthermore, CYP3A4 is regulated by several nuclear receptors, including the constitutive androstane receptor (CAR), PXR and the glucocorticoid receptor (GR). It has been reported that L is able to inhibit CYP3A4 in vitro (38), which is consistent with the results of the present study.

LG and LA are bioactive constituents of G. uralensis. These two compounds have various biological activities, including antioxidative, anti-inflammatory and anticarcinogenic activities. However, it remains unknown how these two compounds modulate the expression of CYP450 enzymes. The present study is, to the best of our knowledge, the first study to report the effects of LG and LA on the expression of CYP in HepG2 cells. It was demonstrated that LG inhibited the expression of CYP1A2 and CYP2E1 and induced the expression of CYP2D6 and CYP3A4 in HepG2 cells at a concentration of 25 µM. Moreover, these compounds inhibited the expression of CYP2D6 and CYP3A4 at a higher concentration (50 µM). The results showed that LA effectively inhibited the expression of CYP2D6, CYP2E1, and CYP3A4, but did not affect CYP1A2 expression.

The results demonstrating the effects of these compounds on CYP2D6 activity were similar to the qPCR data showing the effects of the compounds on CYP2D6 gene expression. Moreover, the cocktail assay allowed for determination of the activity of CYP2C8 and CYP2C19, which are expressed at very low levels in HepG2 cells. Of note, the data for the two latter enzymes were highly distinctive from the results of the gene expression analysis as well as the gene expression and cocktail results in the present study, which may be due to the system used in these experiments and the concentrations of compounds used to treat the cells. Moreover, certain compounds may have induced or inhibited the expression of genes and affected the activity of proteins through diverse pathways.

Through the overview of the bioinformatics network of the influence of G. uralensis-derived compounds on metabolic enzymes, increasing evidence has shown that the compounds GA, IL, GL, and L, derived from G. uralensis, had effects on metabolic enzymes, particularly CYP450 family enzymes, and CYP1A1, -2D, -2C, -2E, -3A and -2A were most susceptible to regulation by the bioactive components of G. uralensis. This showed the major targets among the CYP450 enzymes in regard to the modulation of drug functions and properties by G. uralensis.

Due to the complexity of the components of G. uralensis and pathophysiology, it is very difficult to fully elucidate the mechanisms of the modulation of the activity of drugs exclusively from the aspect of metabolic enzymes. Thus, the present study was incomplete, and a metabolomics study could be conducted to explain the mechanism from the aspect of endogenous metabolites.

In conclusion, the present study has demonstrated that the bioactive constituents of G. uralensis differentially modulated the expression of CYP enzymes. Moreover, a combination of gene expression studies using qPCR and activity assays for CYP450 in HLMs using cocktail probes and UPLC-MS/MS analysis allowed for correlation between Chinese Herbal Medicine and CYP450 enzymes. The findings of the present study are useful and may aid physicians to avoid risks and side effects caused by interactions between G. uralensis extracts and conventional drugs metabolized by these enzymes. The present study also sheds light on the mechanism by which G. uralensis modulates the properties of other drugs in the context of metabolism by CYP450 expression.

Acknowledgements

The authors thank Professor Gengfu Chen, School of Basic Courses, Guangdong Pharmaceutical University, for his guidance in the experiments. The present study was supported by the National Natural Science Foundation of China (no. 30801543).

References

