Luteolin-induced protection of H$_2$O$_2$-induced apoptosis in PC12 cells and the associated pathway

PENG LIN1*, XING-HAN TIAN1*, YONG-SHANG YI2, WEN-SHI JIANG3, YING-JIE ZHOU2 and WEN-JING CHENG4

1Department of Intensive Care Unit, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000; 2Department of Neurology, Seaport Hospital Shandong, Yantai, Shandong 264000; 3Department of Intensive Care Unit, People's Hospital of Yangshuo County, Yangshuo, Guangxi 541900; 4Department of Neurology, No. 1 People's Hospital of Jining, Jining, Shandong 272000, P.R. China

Received January 20, 2015; Accepted September 10, 2015

DOI: 10.3892/mmr.2015.4400

Abstract. Increasing evidence has indicated that the generation of reactive oxygen species (ROS) contributes to H$_2$O$_2$-induced nerve injury. This may result in oxidative stress that leads to cell damage or death. Dietary or pharmaceutical augmentation of the endogenous antioxidant defense capacity is a potential means by which to prevent ROS-induced damage. The aim of the current study was to investigate the effect of luteolin on H$_2$O$_2$-induced cell apoptosis in cultured rat pheochromocytoma cells (PC12 cells) and to investigate the role of the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway on H$_2$O$_2$-induced apoptosis. The results demonstrated that luteolin was able to inhibit the reduction in cell viability induced by H$_2$O$_2$. In addition, luteolin reduced ROS generation and lactate dehydrogenase release in H$_2$O$_2$-treated PC12 cells. The levels of superoxide dismutase and glutathione peroxidase activity were increased following treatment with luteolin, however malondialdehyde levels were observed to be reduced. Additionally, luteolin increased the Bcl-2/Bax ratio and enhanced Akt phosphorylation. However, these alterations were attenuated by pretreatment with an inhibitor of the PI3K/Akt pathway. In conclusion, luteolin inhibited H$_2$O$_2$-induced apoptosis via reducing ROS levels and activating the PI3K/Akt pathway.

Introduction

Oxidative stress is a mechanism commonly implicated in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (1-3). There is increasing evidence that the production of reactive oxygen species (ROS) during oxidative stress leads to mitochondrial dysfunction and apoptosis (4-7). A previous study demonstrated that numerous chemical and physiological inducers of oxidative stress result in apoptosis (7). Among them, H$_2$O$_2$ has been extensively used to induce oxidative stress in vitro (8). The products of H$_2$O$_2$, superoxide and hydroxyl radicals, are the major components of ROS.

A crucial balance between ROS generation and antioxidant defence is important in disease prevention. Antioxidants are able to help reduce neuronal degeneration by preventing the generation of free radicals (9-14). However, the synthetic antioxidants are associated with toxicity and are potential carcinogens (15). Therefore, the development of non-toxic and highly active antioxidant compounds is important.

Luteolin (3,4,5,7-tetrahydroxylflavone) is a component of numerous traditional Chinese medicines, and is a flavonoid compound derived from Lonicera japonica Thunb. Luteolin has been demonstrated to possess numerous biological effects, including anti-inflammatory, anti-oxidative and anticarcinogenic activity (16-19). Luteolin has been previously used in pharmacological and clinical practice (20,21). The current study investigated whether luteolin has protective effects against H$_2$O$_2$-induced apoptosis in rat pheochromocytoma cells (PC12 cells), and the potential signaling pathways involved were explored.

Materials and methods

Materials. PC12 cells were obtained from the American Type Culture Collection (Manassas, VA, USA). All cell culture medium components were purchased from Invitrogen Life Technologies (Carlsbad, CA, USA). H$_2$O$_2$ was purchased from Sigma-Aldrich (St. Louis, MO, USA). LY294002 was supplied by EMD Millipore (Billerica, MA, USA). Luteolin was obtained from Chengdu Must Biotechnology Co., Ltd. (Chengdu, China) and the purity of the chemical was >98.0%.

Cell culture and treatment. PC12 cells (1x106) were grown (100 µl/well in 96-well plates) in Dulbecco's modified Eagle's
medium supplemented with 10% fetal calf serum, 1% penicillin and streptomycin at 37°C and 5% CO₂ and 95% air for 24 h. Cells were used for experiments during the exponential growth phase. PC12 cells were preconditioned with different concentrations of luteolin (10, 25 and 50 µg/ml) for 1 h, whereas the control cells received 0.9% saline (Beyotime Institute of Biotechnology, Nantong, China) instead. Subsequently, PC12 cells were exposed to H₂O₂ (400 µM, final concentration) for 6 h.

Cell viability assay. Cell viability was determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay. Following H₂O₂ (400 µM) treatment alone or with different concentrations of luteolin for 6 h, cells were incubated with 20 µl MTT (Beyotime Institute of Biotechnology) for 4 h. Cells were pretreated with phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (60 µM) for 1 h at 37°C to investigate the role of protein kinase B (Akt) in the effect of luteolin (50 µg) on PC12 cells. Absorbance was measured at 570 nm (iMark; Bio-Rad Laboratories, Inc., Hercules, CA, USA) and used to calculate the relative ratio of cell viability.

Cytotoxicity assay. Cell death was assessed by measuring LDH release into the medium (22). Following H₂O₂ (400 µM) treatment alone or with different concentrations of luteolin for 6 h, the medium was collected. LDH release was measured according to the manufacturer's instructions (Nanjing Jincheng Bioengineering Institute, Nanjing, China).

Measurement of intracellular ROS generation. Intracellular ROS levels were determined using fluorescent 2',7'-dichlorodihydrofluorescein (DCF) derived from cell-permeable dichlorodihydrofluorescein diacetate (DCFH-DA) from Nanjing Jincheng Bioengineering Institute (Nanjing, China) (23). Following treatment with H₂O₂ (400 µM) alone or with different concentrations of luteolin for 6 h, PC12 cells were incubated with 200 µl medium containing 2 µl 20 mM DCFH-DA solution for 30 min in the dark at 37°C and 5% CO₂. Subsequently, cells were washed twice with normal medium (PBS; pH 7.4; Beyotime Institute of Biotechnology) and DCF fluorescence was measured with excitation/emission wavelengths of 485/530 nm (BX50-FLA; Olympus Corporation, Tokyo, Japan).

Measurement of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels. Cells were harvested by centrifugation at 1,380 x g at 4°C for 5 min, washed with cold phosphate-buffered saline (PBS; Gibco Life Technologies; Thermo Fisher Scientific, Inc., Waltham, MA, USA) twice and homogenized in lysis buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1% Triton X-100 and 1 mM PMSF. The supernatant was then collected. The levels of SOD, GSH-Px and MDA were measured according to the manufacturer's instructions of the respective kits (Nanjing Jincheng Bioengineering Institute).

Western blotting. Following H₂O₂ (400 µM) treatment alone or with different concentrations of luteolin for 6 h, PC12 cells were washed with cold PBS and homogenized in lysis buffer containing proteinase inhibitors. Following measurement of protein levels using a Bicinchoninic Acid Protein Assay kit (Beyotime Institute of Biotechnology), protein was mixed with 5X SDS sample buffer. Subsequently proteins were separated using 10% SDS-PAGE and transferred onto polyvinylidene difluoride membranes (EMD Millipore, Billerica, MA, USA). Following blocking with 5% fat-free milk for 2 h at room temperature, the membranes were incubated overnight at 4°C with polyclonal antibodies specific to Akt (anti-mouse; 1:1,000 dilution; cat. no. SAB4500797; Sigma-Aldrich), phosphorylated Akt (p-Akt; anti-mouse; 1:1,000 dilution; cat. no. SAB4301414; Sigma-Aldrich), Bcl-2 (anti-mouse; 1:1,000 dilution; cat. no. SAB1305653; Sigma-Aldrich), Bax (anti-mouse; 1:1,000 dilution; cat. no. B3428; Sigma-Aldrich) and β-actin (anti-mouse; 1:1,000 dilution; cat. no. A1978; Sigma-Aldrich). Subsequently, the membranes were incubated with the corresponding secondary antibodies (anti-rabbit; 1:1,000 dilution; cat. no. SE7; Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) at room temperature for 2 h. The blots were visualized using enhanced chemiluminescence-plus reagent (EMD Millipore), and analyzed using LabImage software, version 2.7.1 (Kapelan GmbH, Halle, Germany).

Statistical analysis. All the experiments were performed a minimum of three times. Values are presented as the mean ± standard deviation. Differences between groups were analyzed using a one-way analysis of variance with SPSS 13.0 software (SPSS, Inc., Chicago, IL, USA), followed by Dunnett's test. P<0.05 was considered to indicate a statistically significant difference.

Results

Effect of luteolin on cell viability in PC12 cells. In order to determine the working concentration of luteolin, PC12 cells were treated with luteolin, from which three concentrations of luteolin (10, 25 and 50 µg/ml) were selected for subsequent experiments. The MTT assay indicated that the percentage of viable cells following treatment with 400 µM H₂O₂ was 22.2±3.1% (Fig. 1A). Following pretreatment with 10, 25 and 50 µg/ml luteolin, cell viability was 30.29±2.1, 45.6±4.7% and 49.4±5.3, respectively. These results indicate that luteolin is able to attenuate H₂O₂-induced cytotoxicity in PC12 cells.

Effect of luteolin on LDH release in PC12 cells. LDH release was used to measure the level of cell death, and compared with the control group, LDH release from cells treated with 400 µM H₂O₂ was 181.5±4.2%. Following pretreatment with different concentration of luteolin, LDH release was 167.2±3.3, 140.3±2.7% and 112.6±5.1, respectively, compared with the control group. These results indicate that luteolin is able to attenuate H₂O₂-induced cytotoxicity in PC12 cells (Fig. 1B).

Effect of luteolin on ROS generation in PC12 cells. The effect of luteolin on H₂O₂-induced ROS generation in PC12 cells was measured. It was observed that treatment of the cells with 400 µM H₂O₂ increased the generation of ROS (Fig. 2). However, the increased ROS generation was significantly
reduced following pretreatment of the cells with different concentrations of luteolin.

Effect of luteolin on SOD, GSH-Px and MDA levels in PC12 cells. The activity of the antioxidant enzymes (SOD

Figure 1. (A) Effect of luteolin on cell viability. (B) Effect of luteolin on LDH activity induced by H\textsubscript{2}O\textsubscript{2} in PC12 cells. \(^{**} P<0.01 \) vs. control group, \(^{\Delta} P<0.05 \), \(^{\Delta\Delta} P<0.01 \) vs. H\textsubscript{2}O\textsubscript{2} alone group. LDH, lactate dehydrogenase; PC12, rat pheochromocytoma cells.

Figure 2. Effect of luteolin on the reduction in ROS generation induced by H\textsubscript{2}O\textsubscript{2} in PC12 cells. \(^{**} P<0.01 \) vs. control group, \(^{\Delta} P<0.05 \), \(^{\Delta\Delta} P<0.01 \) vs. H\textsubscript{2}O\textsubscript{2} treated alone group. ROS, reactive oxygen species; PC12, rat pheochromocytoma cells.

Figure 3. Effect of luteolin on the levels of (A) SOD, (B) GSH-Px and (C) MDA in PC12 cells. \(^{**} P<0.01 \) vs. control group, \(^{\Delta} P<0.05 \), \(^{\Delta\Delta} P<0.01 \) vs. H\textsubscript{2}O\textsubscript{2} treated alone group. SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; PC12, rat pheochromocytoma cells.
and GSH-Px) and the end product of oxidation (MDA) were measured in the PC12 cells. The results indicated a significant reduction in the activity levels of SOD and GSH-Px, in addition to an increase in the level of MDA following treatment with 400 µM H₂O₂. The reduced SOD and GSH-Px activity was attenuated following pretreatment with luteolin, with 25 and 50 µg/ml luteolin significantly ameliorating the increased MDA levels following H₂O₂ treatment (Fig. 3).

Effect of luteolin on the Bcl-2/Bax ratio in PC12 cells. To further investigate the effect of luteolin on H₂O₂-induced PC12 cell apoptosis, the Bcl-2/Bax ratio was measured. The western blotting results demonstrated that the Bcl-2/Bax ratio was reduced in PC12 cells in the H₂O₂-treated group compared with the control group (Fig. 4). However, pretreatment with luteolin significantly attenuated this reduction.

Effect of luteolin on the PI3K/Akt pathway in PC12 cells. The western blot analysis demonstrated that the luteolin treatment significantly increased the levels of p-Akt (Fig 5A). To investigate whether the protective effects of luteolin were mediated through the PI3K/Akt pathway, PC12 cells were pretreated with LY294002, a PI3K/Akt inhibitor. The results demonstrated that the effects of luteolin on p-Akt levels (Fig. 5A), cell viability (Fig. 5B) and the Bcl-2/Bax ratio (Fig. 5C) were reduced following the pretreatment with LY294002.

Discussion

Previous studies have demonstrated that oxidative stress is important in the activation of apoptosis and neuronal cell death in neurodegenerative diseases (24-26). H₂O₂ generates superoxide and hydroxyl radicals, the major components of ROS, and has been extensively used to induce oxidative stress in vitro (8). PC12 cells are commonly used...
for neurobiological and neurochemical studies (12,27,28). Therefore, in the current study
H₂O₂-induced cytotoxicity was investigated in PC12 cells. Luteolin has been
demonstrated to exhibit anti-inflammatory, anti-oxidative
and anti-carcinogenic effects (16-18). The current study
investigated whether luteolin has protective effects against
H₂O₂-induced apoptosis in PC12 cells, and therefore whether it
may be of clinical importance.

LDH is an enzyme involved in glycolysis, and cell damage
results in the release of LDH, therefore the activity levels of
LDH are used as an indicator of cellular integrity. ROS are
a product of the aerobic metabolism, and the excess genera-
tion of ROS results in lipid peroxidation (29). Cells possess
endogenous antioxidants such as GSH-Px and SOD, which
scavenge ROS to prevent cell damage. The predominant
physiological functions of GSH-Px are free radical scav-
ing, antioxidant activity and anti-aging activity (30). SOD
is able to transform intracellular superoxide anions into H₂O₂.
MDA is the end-product of oxygen-derived free radicals
and lipid oxidation, and may be used as an indicator of oxidative
damage (31). The current study demonstrated that luteolin was
able to inhibit the reduction in cell viability induced by H₂O₂.

In addition, luteolin was able to reduce ROS formation and
LDH release in H₂O₂-treated PC12 cells. SOD and GSH-Px
avtivity were observed to increase following treatment with
luteolin, while MDA was reduced. Together, this demonstrates
that luteolin was able to increase antioxidant defense, reduce
the production of ROS and cellular damage, indicating that
luteolin has protective effects against H₂O₂-induced damage
in PC12 cells.

The Bcl-2 and Bax genes have been demonstrated to serve
a key role in determining whether a cell survives or undergoes
apoptosis (32). Bcl-2 and Bax are Bcl-2 family members,
and Bcl-2 is involved in the maintenance of cell survival, while
Bax serves to accelerate apoptosis. Bcl-2 and Bax have been
suggested to be implicated in apoptosis induced by ROS-gener-
tating agents (33). In the current study, following pretreat-
ment with luteolin the expression of Bcl-2 was increased, while
the expression of Bax was reduced. These alterations resulted in
an increase in the Bcl-2/Bax ratio, which indicates that apop-
tosis was inhibited. These results indicated that luteolin was
able to attenuate H₂O₂-induced apoptosis in PC12 cells.

Akt is a central node in cell signaling downstream of
growth factors, cytokines and additional cellular stimuli. It
promotes cell survival and protects against apoptosis through
its ability to phosphorylate and inactivate apoptotic factors (34).
Previous studies have indicated that in response to oxidants
such as H₂O₂, Akt was rapidly activated (35,36). Futhermore,
a previous study demonstrated that Bcl-2 acts downstream of the
PI3K/Akt signaling pathway, and that upregulation of Bcl-2 serves
an important role in cell survival (37). In the present
study, the results demonstrated that luteolin enhanced the
PI3K/Akt pathway in response to H₂O₂.

LY294002 is a selective inhibitor of PI3K, which was
demonstrated in the current study to attenuate the effect of
luteolin on cell viability, Akt phosphorylation and the
Bcl-2/Bax ratio. These results suggest that luteolin was able
to protect the PC12 cells against H₂O₂-induced apoptosis via
reducing ROS levels and activating the PI3K/Akt signaling
pathway.

In conclusion, the current study demonstrated that luteolin
protected PC12 cells from H₂O₂-induced apoptosis, via the
activation of the PI3K/Akt signaling pathway. Therefore lute-
olin may have protective effects, and further study is required
to fully elucidate the protective mechanisms.

References
7. Heo SR, Han AM, Kwon YK: p52 protects SH-SY5Y neuro-
blastoma cells against H2O2-induced injury through the
8. Satoh T, Sakai N, Enokido Y, Uchiyama Y and Hatanaka H: Free radical-independent protection by nerve growth factor and
10. Floyd RA: Antioxidants, oxidative stress, and degenerative
11. Sultana R, Newman S, Mohamm-Abdul H, Keller JN and
Butterfield DA: Protective effect of the xanthate, D609,
on Alzheimer's amyloid betapetide (1-42)-induced oxidative stress
12. Koh SH, Kwon H, Park KH, Ko JK, Kim JH, Hwang MS,
diallyl disulfide on oxidative stress-injured neuronally differen-
13. Choi BJ, Kim MJ, Ko HH, Hong B, Cho HX, Kim YI, Kim HK,
Lim ST, Jun WJ, Kim EK and Shim DH: Ameliorating effect of
Gardenia jasminoides extract on amyloid beta peptide-induced
protects PC12 cells against beta-amyloid-induced cell injury.
15. Soubra L, Sarkis D, Hilan C and Verger P: Dietary exposure of
children and teenagers to benzoates, sulphites, butylhydro-
xanisol (BHA) and butylhydroxytoluene (BHT) in Beirut
16. Pandurangan AK, Dharmalingam P, Ananda Sadaigum SK and
Ganapassam S: Effect of luteolin on the levels of glycoproteins
during azoxymethane-induced colon carcinogenesis in mice.
17. Jung HA, Jin SE, Min BS, Kim BW and Choi JS: Anti-inflam-
natory activity of Gardenia jasminoides L. and its major
flavonoid, luteolin 5-O-glucoside. Food Chem Toxicol 50:
2171-2179, 2012.
18. Manju V and Nalini N: Protective role of luteolin in 1,2-dimeth-
ylhydrazine induced experimental colon carcinogenesis. Cell
20. Casagrande F and Darbon JM: Effects of structurally related
flavonoids on cell cycle progression of human melanoma cells:

