Disrupted intestinal structure in a rat model of intermittent hypoxia

JUNPING WU¹²*, XIN SUN¹³*, QI WU¹³, HONGWEI LI¹², LI LI², JING FENG⁴, SUBEI ZHANG¹, LONG XU¹³, KUAN LI¹³, XUE LI¹³, XING WANG² and HUAIYONG CHEN¹³

¹Department of Basic Medicine, Haihe Clinical College, Tianjin Medical University, Tianjin 300350; ²Department of Respiratory Medicine, Tianjin Haihe Hospital; ³Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350; ⁴Respiratory Department, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China

Received May 25, 2015; Accepted March 9, 2016

DOI: 10.3892/mmr.2016.5068

Abstract. Obstructive sleep apnea (OSA) is a chronic condition characterized by chronic intermittent hypoxia (IH) and subsequent reoxygenation (ROX). The gastrointestinal system, which is particularly sensitive to tissue hypoxia and reduced perfusion, is likely to be affected by OSA. A rat model of IH was used to analyze oxidative stress-associated genes and tight junction proteins by reverse transcription–quantitative polymerase chain reaction. Subsequently, altered morphology of the duodenal mucosa and elevated Chiu scores were observed in the IH-exposed rats. In addition, IH exposure resulted in upregulation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, NADPH oxidase 2 and p22phox, in the small intestine, and upregulation of transcription factors, including hypoxia-inducible factor-1, nuclear factor-xB and activator protein-1. Furthermore, the mRNA expression levels of intestinal tight junction (TJ)-related proteins, claudin-1 and claudin-4, were decreased in the IH-exposed group, as compared with in the control group. In conclusion, the present study demonstrated that OSA, which is characterized by IH and ROX, may lead to disruption of the duodenum. The mechanism underlying the effects of OSA on duodenal morphology may be associated with increased oxidative stress and activation of transcription factors, subsequently inducing intestinal TJ disruption and intestinal injury.

Introduction

Obstructive sleep apnea (OSA) is a breathing disorder that is characterized by repetitive episodes of complete or partial upper airway obstruction during sleep, which leads to intermittent reduction or complete blockage of airflow (1). The prevalence of OSA is 3-7% in men and 2-5% in women (1). Repetitive OSA results in chronic intermittent hypoxia (IH), which is followed by reoxygenation (ROX), and is characterized by frequent decreases in blood O₂ saturation. The clinical symptoms of sleep apnea were reported as early as the 19th century (2); however, it was not until the 1980s that researchers began to investigate and understand OSA (3).

OSA has been associated with numerous comorbidities, including cardiovascular alterations, diabetes and depression (4). Although efforts have been made to comprehend the consequences of OSA and the underlying state of IH, there may be more problems or comorbidities associated with OSA than originally expected. The gastrointestinal system is likely to be affected by OSA, since the gastrointestinal epithelium is particularly sensitive to tissue hypoxia and reduced perfusion. Furthermore, a clinical study involving 35,480 patients indicated sleep apnea as an independent risk factor for gastric and duodenal ulcer bleeding (5), thus suggesting that OSA may compromise the gastrointestinal system; however, the underlying mechanism is not well understood. Therefore, the present study hypothesized that IH, a characteristic of OSA, may induce intestinal injury.

Integrity of the intestinal epithelium is essential for normal physiological function and the prevention of disease, since it restricts the free passage of toxic and infectious molecules from the gut lumen whilst allowing selective paracellular absorption of nutritive material. The major determinants of intestinal barrier function are the intercellular tight junctions (TJs), which are located in the uppermost region of the lateral membranes of epithelial and endothelial cells (6). Several TJ
compounds have been identified, including the transmembrane proteins occludin and claudin, and the peripheral membrane proteins zona occludens (ZO)s (7). Claudins are considered integral proteins of TJs that regulate size selectivity of the TJ barrier. Occludin is thought to be the primary sealing protein of the epithelial intercellular space, whereas ZO s are the critical scaffold proteins that link transmembrane TJ components to the intracellular actin cytoskeleton (8).

Growing evidence from cellular and animal models, and population surveys of OSA, has demonstrated that exposure to IH is associated with the activation of oxidative stress and inflammatory processes (9). IH induces the accumulation of reactive oxygen species (ROS), which initiates oxidative stress-sensitive signaling pathways and inflammatory processes. Various transcription factors and inflammatory mediators implicated in this process have previously been identified (10). Among these, much attention has been focused on hypoxia-inducible factor-1 (HIF-1), nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). The transcription factor HIF-1 is the main regulator of oxygen homeostasis and serves a key role in the response to hypoxia in most tissues (11). NF-κB and AP-1 are transcription factors implicated in inflammatory processes. Once they are activated, several target genes are transcribed, triggering an inflammatory cascade. A previous study suggested that the expression and function of TJs are affected by proinflammatory cytokines and intracellular signaling molecules (12). Therefore, it is essential to identify whether IH has an effect on the intestinal gene expression of transcription factors and inflammatory mediators, and whether it induces TJ disruption via activation of oxidative stress and inflammatory processes.

In the present study, a rat model was developed to mimic the recurrent IH and subsequent ROX experienced by patients with OSA. It was hypothesized that this pathological environment may result in activation of oxidative stress and inflammatory processes in the duodenum, subsequently compromising intestinal barrier function by disrupting TJs.

Materials and methods

Ethics statement. Rats were used in strict accordance with the protocol approved by the Animal Care Committee of Tianjin Medical University General Hospital (Tianjin, China).

Animals and treatments. Male Wistar rats (180±20 g; n=30; 6-weeks-old) were purchased from the Model Animal Center of Radiological Medicine Research Institute, China Academy of Medical Science (Tianjin, China). Rats were housed in standard laboratory cages (n=5/cage) at 22°C with a 12 h light/dark cycle and free access to food and water. The rats were randomly divided into two groups (n=15/group) matched for body weight: The IH-exposed group and the control group. Rats in the IH-exposed group were exposed to IH for 8 h/day during the rodent diurnal sleep period, between 9 AM and 5 PM, repeatedly for 7 days/week for 8 consecutive weeks, in a specialized plexiglas chamber (dimensions 30x20x20 cm), as previously described (13). Pure nitrogen and compressed air were flushed into the chamber in turn to maintain an IH cycle. Each cycle of IH lasted 120 sec, the first 30 sec being the hypoxic phase and the following 90 sec the ROX phase (during which the nitrogen was replaced with clean air). Gas flow was regulated by timer-controlled solenoid valves and an O2 flow meter. The O2 and CO2 concentrations were continuously monitored by an O2 and CO2 concentration monitor (Hamilton Medical AG, Bonaduz, Switzerland). The control rats underwent an identical protocol; however, the nitrogen source was replaced with a clean air source.

Histological analysis. Following treatment, rats were anesthetized by intraperitoneal injection of 30 mg/kg pentobarbital sodium (Sigma-Aldrich, St. Louis, MO, USA), and the duodenum was excised and rinsed in ice-cold phosphate-buffered saline (pH 7.4). The duodenal tissues were subsequently fixed in 10% neutral buffered formalin for 24 h, were paraffin-embedded, cut into 5 µm sections, and were processed for hematoxylin and eosin (H&E) staining (Solarbio Science & Technology Co., Ltd., Beijing, China). The stained sections were analyzed, and images of the representative fields were captured using an Olympus BX53 microscope (Olympus Corporation, Tokyo, Japan). Morphological injury of the duodenal mucosa was assessed using the Chiu histological injury scoring system for intestinal villi. The numerical scores were as follows: 0, normal mucosa; 1, development of subepithelial Gruenhausen's space and vacuolization at the apex of the villi; 2, extension of the subepithelial space with moderate lifting of the epithelial layer from the lamina propria; 3, massive subepithelial lifting down the sides of villi; 4, epithelial lifting and vacuolization from the tip to the lower portion of villi; and 5, mucosal hemorrhage, ulceration and disintegration of the lamina propria (14). Two independent and blinded researchers performed the histological scoring.

Total RNA isolation. TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used to extract RNA from homogenized duodenal tissues, according to the manufacturer's protocol. Extract yield and quality were determined by measuring the absorbance at 260 and 280 nm using a MaestroNano Micro-volume Spectrophotometer (Maestrogen, Inc., Las Vegas, NV, USA). The absorbance ratio of 260:280 nm was between 1.8 and 2.0.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). mRNA (3 µg) was reverse transcribed into cDNA with an oligo (dT) primer for 1 h at 50°C using the TIANscript RT kit (Tiangen Biotech Co., Ltd., Beijing, China), according to the manufacturer's protocol. Extract yield and quality were determined by measuring the absorbance at 260 and 280 nm using a MaestroNano Micro-volume Spectrophotometer (Maestrogen, Inc., Las Vegas, NV, USA). The absorbance ratio of 260:280 nm was between 1.8 and 2.0.

Growing evidence from cellular and animal models, and population surveys of OSA, has demonstrated that exposure to IH is associated with the activation of oxidative stress and inflammatory processes (9). IH induces the accumulation of reactive oxygen species (ROS), which initiates oxidative stress-sensitive signaling pathways and inflammatory processes. Various transcription factors and inflammatory mediators implicated in this process have previously been identified (10). Among these, much attention has been focused on hypoxia-inducible factor-1 (HIF-1), nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). The transcription factor HIF-1 is the main regulator of oxygen homeostasis and serves a key role in the response to hypoxia in most tissues (11). NF-κB and AP-1 are transcription factors implicated in inflammatory processes. Once they are activated, several target genes are transcribed, triggering an inflammatory cascade. A previous study suggested that the expression and function of TJs are affected by proinflammatory cytokines and intracellular signaling molecules (12). Therefore, it is essential to identify whether IH has an effect on the intestinal gene expression of transcription factors and inflammatory mediators, and whether it induces TJ disruption via activation of oxidative stress and inflammatory processes.

In the present study, a rat model was developed to mimic the recurrent IH and subsequent ROX experienced by patients with OSA. It was hypothesized that this pathological environment may result in activation of oxidative stress and inflammatory processes in the duodenum, subsequently compromising intestinal barrier function by disrupting TJs.

Materials and methods

Ethics statement. Rats were used in strict accordance with the protocol approved by the Animal Care Committee of Tianjin Medical University General Hospital (Tianjin, China).

Animals and treatments. Male Wistar rats (180±20 g; n=30; 6-weeks-old) were purchased from the Model Animal Center of Radiological Medicine Research Institute, China Academy of Medical Science (Tianjin, China). Rats were housed in standard laboratory cages (n=5/cage) at 22°C with a 12 h light/dark cycle and free access to food and water. The rats were randomly divided into two groups (n=15/group) matched for body weight: The IH-exposed group and the control group. Rats in the IH-exposed group were exposed to IH for 8 h/day during the rodent diurnal sleep period, between 9 AM and 5 PM, repeatedly for 7 days/week for 8 consecutive weeks, in a specialized plexiglas chamber (dimensions 30x20x20 cm), as previously described (13). Pure nitrogen and compressed air were flushed into the chamber in turn to maintain an IH cycle. Each cycle of IH lasted 120 sec, the first 30 sec being the hypoxic phase and the following 90 sec the ROX phase (during which the nitrogen was replaced with clean air). Gas flow was regulated by timer-controlled solenoid valves and an O2 flow meter. The O2 and CO2 concentrations were continuously monitored by an O2 and CO2 concentration monitor (Hamilton Medical AG, Bonaduz, Switzerland). The control rats underwent an identical protocol; however, the nitrogen source was replaced with a clean air source.

Histological analysis. Following treatment, rats were anesthetized by intraperitoneal injection of 30 mg/kg pentobarbital sodium (Sigma-Aldrich, St. Louis, MO, USA), and the duodenum was excised and rinsed in ice-cold phosphate-buffered saline (pH 7.4). The duodenal tissues were subsequently fixed in 10% neutral buffered formalin for 24 h, were paraffin-embedded, cut into 5 µm sections, and were processed for hematoxylin and eosin (H&E) staining (Solarbio Science & Technology Co., Ltd., Beijing, China). The stained sections were analyzed, and images of the representative fields were captured using an Olympus BX53 microscope (Olympus Corporation, Tokyo, Japan). Morphological injury of the duodenal mucosa was assessed using the Chiu histological injury scoring system for intestinal villi. The numerical scores were as follows: 0, normal mucosa; 1, development of subepithelial Gruenhausen's space and vacuolization at the apex of the villi; 2, extension of the subepithelial space with moderate lifting of the epithelial layer from the lamina propria; 3, massive subepithelial lifting down the sides of villi; 4, epithelial lifting and vacuolization from the tip to the lower portion of villi; and 5, mucosal hemorrhage, ulceration and disintegration of the lamina propria (14). Two independent and blinded researchers performed the histological scoring.

Total RNA isolation. TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used to extract RNA from homogenized duodenal tissues, according to the manufacturer's protocol. Extract yield and quality were determined by measuring the absorbance at 260 and 280 nm using a MaestroNano Micro-volume Spectrophotometer (Maestrogen, Inc., Las Vegas, NV, USA). The absorbance ratio of 260:280 nm was between 1.8 and 2.0.
The histological findings suggest that exposure to IH results in damage to the duodenal epithelium. Hypoxia is known to lead to inflammation; in order to assess whether IH contributes toward injury to the duodenal epithelium, duodenal morphology was examined. Evaluation of the H&E-stained sections revealed morphological alterations to the duodenal mucosa in response to IH exposure (Fig. 1A and B). High-power images of the general epithelial structures of the duodenum from the control or IH-exposed rats were captured (Fig. 1C and D). The histological images of the duodenal specimens from the control rats (Fig. 1A) exhibited normal-appearing mucosal villi with consistent mucosa, as compared with the IH-exposed rats (Fig. 1B). IH-exposed rats exhibited disintegration of the mucosal villi and infiltration of inflammatory cells (Fig. 1B). Furthermore, necrosis and superficial ulceration were detected in the mucosa of certain IH-exposed rats (data not shown). The villous injury score of the IH-exposed rats (mean injury score, 4.00±0.63) was markedly higher compared with the control rats (mean injury score, 0.67±0.58; Fig. 1E). These findings suggest that exposure to IH may result in marked pathophysiological alterations in duodenal tissue.

IH exposure induces activation of oxidative stress and transcription factor expression. A previous study indicated that recurrent hypoxia and ROS cycles increase the production of ROS in OSA (16). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase serves a key role in oxidative stress and is an enzyme involved in the production of ROS (9). To examine whether IH affects NADPH oxidase activity in the intestine, and if so, whether NADPH oxidase activation contributes to the expression of IH-induced transcription factors, the expression levels of NADPH oxidase subunit genes were measured in the IH-exposed and control rats. There was a significant increase in the mRNA expression levels of the NADPH oxidase subunits NF-κB, Nox2, and p22phox in the IH-exposed rats. These data suggest an overexpression of NADPH oxidase in the IH-exposed rats. Therefore, it may be hypothesized that NADPH oxidase is a major source of ROS in the IH-exposed duodenum, and that upregulation of NADPH oxidase results in increased ROS, thereby mediating the onset of oxidative stress.

Results

Exposure to IH results in damage to the duodenal epithelium. Hypoxia is known to lead to inflammation; in order to assess whether IH contributes toward injury to the duodenal epithelium, duodenal morphology was examined. Evaluation of the H&E-stained sections revealed morphological alterations to the duodenal mucosa in response to IH exposure (Fig. 1A and B). High-power images of the general epithelial structures of the duodenum from the control or IH-exposed rats were captured (Fig. 1C and D). The histological images of the duodenal specimens from the control rats (Fig. 1A) exhibited normal-appearing mucosal villi with consistent mucosa, as compared with the IH-exposed rats (Fig. 1B). IH-exposed rats exhibited disintegration of the mucosal villi and infiltration of inflammatory cells (Fig. 1B). Furthermore, necrosis and superficial ulceration were detected in the mucosa of certain IH-exposed rats (data not shown). The villous injury score of the IH-exposed rats (mean injury score, 4.00±0.63) was markedly higher compared with the control rats (mean injury score, 0.67±0.58; Fig. 1E). These findings suggest that exposure to IH may result in marked pathophysiological alterations in duodenal tissue.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>5'-TGGAGTCTACACTGGCGTCTTC-3'</td>
<td>5'-TTACACCCCATCACAACATG-3'</td>
</tr>
<tr>
<td>Nox2</td>
<td>5'-GGCTGTGAATGAGGGACTC-3'</td>
<td>5'-CCAGTGCTGACCCAAGAC-3'</td>
</tr>
<tr>
<td>p22phox</td>
<td>5'-AAGTACCTGACCCGCTGTTG-3'</td>
<td>5'-AGTGATACACTGCGAATG-3'</td>
</tr>
<tr>
<td>HIF-1α</td>
<td>5'-AAGAACCACGCCTATGACGG-3'</td>
<td>5'-CCACCTTTTGGTGAAGCAT-3'</td>
</tr>
<tr>
<td>NF-κB</td>
<td>5'-AGCCCTTGGCTTTTCAACAT-3'</td>
<td>5'-CAGTCCCTGGCTTGTGTTT-3'</td>
</tr>
<tr>
<td>c-fos</td>
<td>5'-CGAGGGAAAGGATAAGA-3'</td>
<td>5'-GTCCAGGGAGTCAGCAGA-3'</td>
</tr>
<tr>
<td>Claudin-1</td>
<td>5'-TGTCACACATTGGCAGAAG-3'</td>
<td>5'-GGCACCCTATGCGGACACC-3'</td>
</tr>
<tr>
<td>Claudin-2</td>
<td>5'-ACAGCAGCTGGCATCACCAC-3'</td>
<td>5'-GCGAGGACATTGACTGGAT-3'</td>
</tr>
<tr>
<td>Claudin-4</td>
<td>5'-AGGGCAAGCTATGACCATACAG-3'</td>
<td>5'-GAAGTCCGCAGTACGGTTG-3'</td>
</tr>
<tr>
<td>Occludin</td>
<td>5'-CTACTCCTTCACCCAGCGAAAG-3'</td>
<td>5'-AGTCATCCACCGAAGAAGTC-3'</td>
</tr>
<tr>
<td>ZO-1</td>
<td>5'-ATTCAAGTTCGCTCCCATGAC-3'</td>
<td>5'-GCTGTGGAAGTCGTGGTGA-3'</td>
</tr>
</tbody>
</table>

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Nox2, nicotinamide adenine dinucleotide phosphate-oxidase; HIF-1α, hypoxia-inducible factor-1α; NF-κB, nuclear factor-xB; ZO-1, zona occludens-1.
IH exposure selectively regulates the mRNA expression levels of TJ proteins. Due to the key function of TJ proteins in the integrity of intestinal mucosa, the present study examined whether IH exposure regulated TJ components in the duodenum, including claudin-1, -2, -4, occludin and ZO-1. RT-qPCR demonstrated that the mRNA expression levels of claudin-1 (Fig. 3A) and claudin-4 (Fig. 3B) were significantly reduced by IH exposure compared with the control group (P<0.01 and P<0.05, respectively). However, no significant alterations were detected in claudin-2, occludin or ZO-1 mRNA expression (Fig. 3C; E; P>0.05). These data suggest that IH exposure selectively loosens TJ proteins of the intestinal luminal cells to increase intestinal permeability, which subsequently leads to a breach in the mucosal barrier during IH.

discussion

The present study used a rat model to provide evidence that IH exposure, the hallmark feature of OSA, may lead to disruption in the duodenum. In addition, increased mRNA expression levels of oxidative stress-related genes and transcription factors were detected in the duodenum following exposure to IH.

IH and subsequent ROX are characteristics of OSA, which is similar to ischemia/reperfusion (I/R) injury. Although no direct study has observed intestinal injury in OSA, it has previously been reported that intestinal damage occurs following I/R injury (17). Intestinal morphological injury alongside a raised Chiu score has been observed in response to I/R injury (17). In addition, functional studies of intestinal barrier function have demonstrated that intestinal permeability increases following I/R injury (18,19). Conversely, no previous studies have reported a direct link between IH and intestinal injury. The present study demonstrated that the intestinal mucosa was significantly compromised following IH exposure, as evidenced by morphological alterations to intestinal structures and elevated Chiu scores. It may therefore be hypothesized that these changes increase mucosal permeability, leading to intestinal barrier dysfunction.

IH-induced oxidative stress represents a pathological link between OSA and resultant multiple organ injury. A previous study demonstrated that IH induces severe oxidative stress in the myocardium, brain, carotid body, adrenal gland and liver in animal models (20). Excess ROS may lead to radical-induced oxidation and damage, serving as key activator for transcription factors and inflammatory pathways (11). Cell culture and animal model studies have demonstrated that HIF-1 is activated by IH exposure (21,22), due to the increased generation of ROS via activated NADPH oxidase and the resultant changes in intracellular Ca\(^2+\) (23). The present study demonstrated that HIF-1α mRNA expression was upregulated in the duodenum following IH exposure. A previous study demonstrated the feed-forward interactions between HIF-1 and ROS under IH conditions (24). IH may activate HIF-1 via a ROS-dependent manner, whereas antioxidants prevent HIF-1 activation (25). Conversely, HIF-1 is required for IH-induced ROS generation, that is, IH elevates ROS levels in wild-type mice, but not in HIF-1α-deficient mice (26). These results suggested that IH may initially induce an increase in ROS levels by activating NADPH oxidase, which upregulates HIF-1α, and once HIF-1 is activated, it may further promote increases in ROS.

NF-κB and AP-1 are transcription factors, which have been investigated in IH. The classical NF-κB pathway is thought to be activated by ROS. Previous studies have reported that IH induces activation of NF-κB and upregulation of NF-κB-dependent genes (26), which is mediated via activation of p38 mitogen-activated protein (MAP) kinase (27). In addition, increased protein and mRNA expression levels of c-fos have been detected in animal and cell models following
exposure to IH (28), thus suggesting that AP-1 serves an important role in IH.

TJs are important for maintaining integrity of the intestinal barrier (29). Disruption of TJs and increased paracellular permeability serve a role in the pathogenesis of several intestinal diseases (30). Furthermore, TJ proteins may be influenced by numerous transcription factors, including HIF-1. A previous study on HIF-1β knockdown cells detected significantly reduced levels of claudin-1, which subsequently led to increased intestinal permeability (31). However, the roles of HIF-1α in the regulation of barrier integrity seem controversial. In addition, HIF-1 has been identified as a
factor associated with barrier protection under hypoxic conditions (32). The present study demonstrated that HIF-1 may serve a gut-injurious role in IH-induced intestinal injury, since the expression of TJ-related proteins was upregulated.

The NF-κB signaling pathway has a role in intestinal epithelial homeostasis and repair (29), and disruption or anomalous activation of NF-κB may exaggerate the inflammatory response (33). A previous cell culture study demonstrated that TNF-α induced downregulation of claudin-1, -2, -4, and occludin, which could be partially alleviated via pharmacological inhibition of NF-κB (34). Furthermore, the NF-κB signaling pathway has been reported to mediate increased expression of myosin light chain kinase, which induces opening of intestinal TJ proteins, thus resulting in TJ barrier breakdown (35). Activation of NF-κB may also mediate claudin-1 internalization and increase paracellular permeability (36). Furthermore, NF-κB associates with AP-1 to induce redistribution of intestinal TJ permeability via increased MAP kinase phosphorylation (37) and interleukin-6 secretion (38). Taken together, these data demonstrate that NF-κB and AP-1 may disrupt intestinal epithelium by regulating TJ components.

Increasing evidence has illustrated the association between hypoxia and gastrointestinal disease (39,40). The absorptive and barrier functions of the intestinal epithelium may be physiologically regulated by the availability of oxygen (39). It is well known that hypoxia may induce inflammation, and conversely, inflamed lesions often become severely hypoxic (41). In addition, hypoxia influences innate and adaptive immunity via activation of HIF-1α (42). Therefore, it may be suggested that hypoxia is a significant component of the inflammatory microenvironment within the intestinal mucosa (40).

The present study has certain limitations. Constrained to the experimental technique, the present study failed to detect ROS accumulation directly. In addition, future experiments that analyze the expression levels of proteins associated with intestinal TJ components and transcription factors by western blotting or immunohistochemistry are required.

In conclusion, the major observation of the present study is that OSA, characterized by IH and subsequent ROX, may be exaggerated via activation of HIF-1α, and ROS may serve a gut barrier protective role, specifically for trafficking and signaling protein complexes. J Cell Biol 151: F31-F36, 2001.

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (grant nos. 31471121 and 81270144) and the Natural Science Foundation of Tianjin City (grant nos. 13JCYBJC22400, 13JCYBJC40000 and 14JCYBJC25700).

References

