Open Access

Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells

  • Authors:
    • Xinchun Zhang
    • Yu Du
    • Junqi Ling
    • Weiqiang Li
    • Yan Liao
    • Xi Wei
  • View Affiliations

  • Published online on: February 3, 2017     https://doi.org/10.3892/mmr.2017.6165
  • Pages: 1673-1681
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to investigate the effect of Dickkopf-related protein 3 (DKK3) on osteogenic differentiation of rat dental follicle cells (DFCs). A PCR array analysis of Wnt pathway activation in DFCs identified genes dysregulated by mineral induction. Among them, DKK3expression levels were decreased, and further experiments were conducted to investigate its role in DFC osteogenesis. By comparing DFCs grown in normal growth and mineral‑induction media for 4 weeks, the present study confirmed that DKK3 was a potential target gene of osteogenesis through reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) and western blotting (WB). A short hairpin RNA (shRNA) was introduced into DFCs using a lentiviral vector to inhibit DKK3 expression. An alkaline phosphatase (ALP) activity assay and Alizarin Red staining were performed to observe the DKK3‑shRNA DFCs. In addition, the osteogenic differentiation of DKK3‑shRNA DFCs was analyzed by RT‑qPCR and WB. In vivo, DKK3‑shRNA DFCs seeded on hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffolds were transplanted into the subcutaneous tissue of mice with severe combined immunodeficiency, followed by hematoxylin‑eosin and Masson staining. The results confirmed that DKK3 expression was downregulated during mineral induction in rat DFCs. Lentivirus‑mediated expression of DKK3 shRNA in DFCs promoted calcified‑nodule formation, ALP activity and the expression of β‑catenin, runt‑related transcription factor 2 and osteocalcin, compared with control cells. In vivo, the implanted section presented the majority of newly formed osteoid matrices and collagen, with limited space between the HA/TCP scaffolds and matrices. In conclusion, DKK3 expression negatively regulates the osteogenic differentiation of DFCs and, conversely, downregulation of DKK3 may enhance DFC osteogenesis.
View Figures
View References

Related Articles

Journal Cover

April-2017
Volume 15 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Du Y, Ling J, Li W, Liao Y and Wei X: Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells. Mol Med Rep 15: 1673-1681, 2017
APA
Zhang, X., Du, Y., Ling, J., Li, W., Liao, Y., & Wei, X. (2017). Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells. Molecular Medicine Reports, 15, 1673-1681. https://doi.org/10.3892/mmr.2017.6165
MLA
Zhang, X., Du, Y., Ling, J., Li, W., Liao, Y., Wei, X."Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells". Molecular Medicine Reports 15.4 (2017): 1673-1681.
Chicago
Zhang, X., Du, Y., Ling, J., Li, W., Liao, Y., Wei, X."Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells". Molecular Medicine Reports 15, no. 4 (2017): 1673-1681. https://doi.org/10.3892/mmr.2017.6165