Protective effect of diminazene attenuates myocardial infarction in rats via increased inflammation and ACE2 activity

JUNJIANG CHEN1, LIANQUN CUI2, JINGLIANG YUAN3, SONGCUN ZHANG3, RONGMEI MA3, HONGJUN SANG3, QINGJIANG LIU3 and LIANFENG SHAN3

1Shandong University School of Medicine, Jinan, Shandong 250100; 2Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021; 3Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China

Received February 8, 2016; Accepted February 9, 2017

DOI: 10.3892/mmr.2017.7152

Abstract. The present study aimed to investigate whether diminazene attenuates myocardial infarction (MI) in rats. In addition, the present study investigated whether ACE2 signaling was involved in the effects of diminazene on protein function. A rat model of acute myocardial infarction (AMI) was established by occlusion of the left anterior descending coronary artery. The AMI model rats received intraperitoneal injections of diminazene (5 mg/kg/day) for 3 days. Treatment with diminazene significantly inhibited the expression of casein kinase and lactate dehydrogenase, and reduced infarct size in AMI rats. The findings indicated that diminazene significantly reduced the levels of inflammatory factors including tumor necrosis factor-α and interleukin-6, suppressed the protein expression of cytochrome c oxidase subunit 2 (COX-2) and inducible nitric oxide synthase (iNOS), and activated angiotensin-converting enzyme 2 (ACE2), angiotensin II receptor type 1 (AT1R) and MAS1 proto-oncogene, G protein-coupled receptor (MasR) protein expression in AMI model rats. In conclusion, the present study demonstrated that diminazene attenuated AMI in rats via suppression of inflammation, reduction of COX-2 and iNOS expression, and activation of the ACE2/AT1R/MasR signaling pathway.

Introduction

Cardiovascular disease has a negative effect on human health and wellbeing. In China, the number of patients with cardiovascular and cerebrovascular diseases has reached 230 million (1). It is estimated that ~3 million patients succumb to cardiovascular disease annually, which ranks in first place in causes of mortality, and the morbidity rate is continuously increasing (2). Additionally, acute myocardial infarction (AMI) threatens human health; AMI leads to the mortality of over half of the patients diagnosed. A previous study estimated that 17 million people worldwide succumb to cardiovascular disease annually (3). The prevalence of AMI is on the rise in China and is near the international average. Onset of acute AMI is sudden and the mortality rate is ~50% (4). Treatment of AMI has progressed; however, the risks of recurring myocardial infarction, congestive heart failure and other complications remain. It is estimated that 1/3 of patients with MI may succumb within one year, particularly patients without congestive heart failure or left ventricular dysfunction (5). The fatality rate in hospitals reached 13.1%, and was 5.5 times greater than in patients without congestive heart failure and left ventricular dysfunction (6). Cardiac failure and dysfunction of ventriculus sinister have already been identified as prognostic hazards of AMI (7).

Various cell types may contribute to the inflammatory response in congestive heart failure, including cardiac muscle, fibroblast, endothelial and infiltrative white blood cells. In addition, cardiac muscle cells are targets of the inflammatory response (8,9).

Activated angiotensin-converting enzyme 2 (ACE2) is primarily expressed in the heart, kidneys, testes, main arteries, gastrointestinal tract, retinas and lungs (10). It is highly expressed in the heart and kidney tissues of humans and rodents. In the heart, ACE2 is primarily expressed in coronary vascular endothelial cells. The smooth muscle layer of coronary vessels exhibits a certain level of expression (11). The function of ACE2 is antagonistic to ACE: ACE converts angiotensin I (AngI) into AngII, a vasoconstrictor substance; and ACE2 converts AngII into the Angl-7 peptide, which is a strong vasodilator response substance. The function of ACE2 has two paths: i) it hydrolyzes AngI, and AngI-9 is further hydrolyzed into Angl-7; and ii) it hydrolyzes AngII directly to generate Angl-7 (11). The efficiency of the latter path is 400-500 times greater than the first path. ACE2 in the renin-angiotensin (RAS) system may contribute to kidney disease, hypertension, heart failure, AMI and other pathological processes. Long-term injections of Angl-7 lead to the reduction of AngII expression levels in the hearts of rats (12). The expression level of ACE2...
was enhanced significantly, whereas AngII, ACE2 activity and AngII type 1 receptor (AT1R) concentrations did not differ. Therefore, Ang1-7 is a product after the reaction of ACE2 (11). ACE1 may enhance the expression levels of Ang1-7 and ACE2 and reduce the expression levels of AngII. Upregulation of ACE2 may be associated with a reduction in Ang1-7 metabolism. AT1R antagonists enhance the expression levels of AngII and Ang1-7, and upregulate ACE2 expression (10). Additionally, ACE2 is effective where there is no AngII; therefore, there may be an independent pathway blocking AT1Rs.

A previous study revealed that diminazene (Fig. 1), alternatively known as Berenil and diminazene (13), may activate the ACE2/Ang1-7/MasR axis of the RAS system (14). Diminazene may be an activator of ACE2, as it has been demonstrated that it may improve the activity of ACE2 (15). Additionally, diminazene may have a protective role in pulmonary hypertension and cerebral arterial thrombosis via the regulation of the protective ACE2/Ang1-7/Mas-R axis. The aim of the present study was to evaluate the protective effect of diminazene on the attenuation of AMI in rats.

Materials and methods

AMI rat model. All experiments were performed in accordance with the Ethics Committee of Shandong University of Medical Sciences (Jinan, China). A total of 30 Sprague-Dawley rats (weight, 250-300 g; age 8-10 weeks) were obtained from the Animal Experimental Center of Shandong University and maintained at a room temperature (23±2°C) with a 12/12 h light-dark cycle. Rats were randomly divided into the following 3 groups (n=10 per group): i) Control group; ii) AMI model group; and iii) AMI + diminazene group, which received 5 mg/kg/day intraperitoneal injections of diminazene (Aburaihan Pharmaceutical Co., Tehran, Iran) for 3 days. Briefly, the rats were anesthetized using an intraperitoneal injection of ketamine (80 mg/kg) and xylazine (5 mg/kg; Sigma-Aldrich; Merck Millipore, Darmstadt, Germany). The AMI model was established by a silk suture (Huaiyin Medical Instruments Co., Ltd., Huaiian, China) used to block the left anterior descending coronary artery. All rats were sacrificed by an intraperitoneal injection of 200 mg/kg pentobarbital (Sigma-Aldrich; Merck Millipore).

Laboratory analysis. Blood samples (~6 ml) were collected from the common carotid artery; serum was obtained following centrifugation at 2,000 x g for 10 min at 4°C and was subsequently stored at -80°C. Casein kinase (CK; catalog no. A032), lactate dehydrogenase (LDH; catalog no. A020-2), tumor necrosis factor-α (TNF-α; catalog no. H052) and interleukin (IL)-6 (catalog no. H007) were quantified using commercial ELISA kits obtained from Nanjing Jiancheng Biotechnology Institute (Nanjing, China), following the manufacturer’s protocol.

Western blot analysis. Rat hearts were excised and stored at -80°C. Rat heart tissue samples (50 mg) were lysed with ice-cold lysis buffer containing phenylmethylsulfonyl fluoride (Beyotime Institute of Biotechnology, Inc., Haimen, China). Protein concentrations were measured using a Bicinchoninic Protein Assay kit (Beyotime Institute of Biotechnology, Inc.). A total of 50 μg protein was loaded onto 10-12% gels, subjected to SDS-PAGE and transferred onto polyvinylidene difluoride membranes (EMD Millipore, Billerica, MA, USA). The membranes were blocked with Tris-buffered saline containing 5% non-fat milk and 0.05% Tween-20, and incubated with the following primary antibodies (Santa Cruz Biotechnology, Inc.; Dallas, TX, USA): Cytochrome c oxidase subunit 2 (COX-2; catalog no. sc-959); inducible nitric oxide synthase (NOS; 1:300; catalog no. sc-649), ACE2 (1:300; catalog no. sc-20998), AT1R (1:300; catalog no. sc-134652), MAS1 proto-oncogene, G protein-coupled receptor (MasR; 1:300; catalog no. sc-32889) or GAPDH (1:300; catalog no. sc-367714) at 4°C overnight. Subsequently, membranes were washed with tris-buffered saline and Tween-20 and incubated with a goat anti-rabbit secondary antibody (1:10,000; catalog no. sc-2004; Santa Cruz Biotechnology, Inc.) at 37°C for 1 h. Membranes were visualized using an Enhanced Chemiluminescence Detection kit (GE Healthcare Life Sciences, Shanghai, China) and quantified using a ScanJet 4C flatbed scanner (Hewlett-Packard, Palo Alto, CA, USA) with ImageJ software version 1.52 (National Institutes of Health, Bethesda, MD, USA).

Statistical analysis. Data are expressed as the mean ± standard error of the mean. The results were analyzed using SPSS software version 19.0 (IBM SPSS, Armonk, NY, USA). Student’s t-test was used for comparison of differences between the groups. P<0.05 was considered to indicate a statistically significant difference.

Results

Protective effect of diminazene attenuates CK and LDH levels in the AMI rat model. Following the establishment of the AMI model, the levels of CK and LDH in serum of rats were quantified. The findings of the present study indicated that the levels of CK and LDH in AMI rats were significantly higher compared with the control group (Fig. 2). Treatment with diminazene significantly reduced CK and LDH levels in AMI rats compared with the untreated AMI model group (Fig. 2).

Protective effect of diminazene attenuates infarct size in the AMI rat model. The present study investigated the effect of diminazene on infarct size in AMI rats. Infarct size was significantly increased in AMI rats compared with the control group (Fig. 3). However, treatment with diminazene significantly reduced infarct size in AMI rats, compared with the untreated AMI model group (Fig. 3).

Protective effect of diminazene attenuates inflammation factors in the AMI rat model. The protective effect of diminazene on the expression of inflammatory factors, including TNF-α and IL-6, in AMI rats was determined using
coronary artery, which leads to cardiac ischemia and results in myocardial necrosis (2). Manifestation of AMI usually involves retrosternal pain, fever, increased white blood cells and increased red blood cell sedimentation rate (16). In addition, AMI may be associated with arrhythmia, shock or cardiac failure, and may endanger patient survival. In patients with irreversible damage to cardiac muscle cells in ventricular sinister, >40% will develop left-sided heart failure, acute pulmonary edema or cardiogenic shock (17). AMI occurs due to acute occlusion and interruption of blood flow through the coronary artery, resulting in myocardial necrosis due to continuous ischemia and anoxia in the cardiac muscle cells (3). In the present study, diminazene significantly decreased the level of CK and LDH expression, and reduced infarct size in AMI rats. These findings suggested that diminazene may suppress myocardial infarction in vitro.

AMI frequently results in chronic heart failure and may lead to an inflammatory response of the heart. A previous study revealed that there was an increase in the expression levels of inflammatory factors in the heart ischemic region and far-end region following myocardial infarction (18,19). Inflammation occurs due to myocardial damage, and blocked blood vessels leads to a stress reaction that results in inflammation. This process is accompanied by infiltration of inflammatory cells (20). Notably the far-end region is maintained in an inflammatory state for up to 7 weeks following the occurrence of AMI. The present study revealed that diminazene treatment significantly reduced the activity of TNF-α and IL-6 in the serum of AMI rats. Kuriakose et al demonstrated that diminazene suppressed inflammatory responses to Trypanosoma conglonense infection (21).

ACE degrades Ang1-7 and inhibits the activity of ACE to increase Ang1-7 expression levels and restrain AT1R, and leads to the accumulation of AngII, which results in degradation of productive Ang1-7 (12). Degradation of Ang1-7 requires the amino terminal of ACE. Ang1-7 may stimulate the circulatory system to release bradykinin, prostaglandin and endothelial tissue-derived nitric oxide (NO), to increase natriuresis and to reduce sodium-potassium-ATP enzyme activity in kidney tubules, to effectively depressurize blood vessels (22). Following myocardial infarction, long-term injections of Ang1-7 may improve cardiac function, coronary perfusion and vascular endothelial cell of aorta, and protect cardiac muscle from ischemia-reperfusion injury (23). The present study demonstrated that diminazene significantly reduced the AMI-induced protein expression levels of COX-2 and iNOS in AMI rats. Zheng et al (24) revealed that diminazene diaceturate reduced inflammation in endotoxin-induced

Discussion

AMI is myocardial ischemic necrosis that occurs via an acute reduction or interruption of blood supply due to lesions in the coronary artery, which leads to cardiac ischemia and results

Figure 2. Protective effect of diminazene attenuated (A) CK and (B) LDH levels in AMI rat model. *P<0.01 vs. control group; **P<0.01 vs. AMI model group. AMI, acute myocardial infraction; CK, casein kinase; Dim, diminazene; LDH, lactate dehydrogenase.

Figure 3. Protective effect of diminazene reduced infarct size in the AMI rat model. Control, control group; ***P<0.01 vs. control group; **P<0.01 vs. AMI model group. AMI, acute myocardial infraction; Dim, diminazene.
Figure 4. Protective effect of diminazene attenuated inflammation factors in the AMI rat model. Protective effect of diminazene attenuates the activity of (A) TNF-α and (B) IL-6 in serum of AMI rats. "##P<0.01 vs. control group; "**P<0.01 vs. AMI model group. AMI, acute myocardial infarction; Dim, diminazene; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α.

Figure 5. Protective effect of diminazene attenuated COX-2 and iNOS protein expression in AMI rat model. Effect of diminazene on COX-2 and iNOS protein expression was determined using (A) western blot analysis and quantification of (B) COX‑2 and (C) iNOS protein expression in AMI rat model. "##P<0.01 vs. control group; "**P<0.01 vs. AMI model group. AMI, acute myocardial infarction; Dim, diminazene; COX‑2, cytochrome c oxidase subunit 2.

Figure 6. Protective effect of diminazene activated ACE2, AT1Rand MasR protein expression in the AMI rat model. Effect of diminazene on ACE2, AT1R and MasR protein expression was determined using (A) western blot analysis and quantification of (B) ACE2, (C) AT1R and (D) MasR protein expression in the AMI rat model. "##P<0.01 vs. control group; "**P<0.01 vs. AMI model group. AMI, acute myocardial infarction; Dim, diminazene; MasR, MAS1 proto-oncogene, G protein-coupled receptor.
uveitis via reduction of COX-2 and iNOS. These findings indicated that the protective effect of diminazene on AMI was associated with COX-2 and iNOS expression levels.

A previous study revealed that the function of the ACE2/Ang1-7/MasR axis is to relax blood vessels, reduce proliferation of cardiac muscle cells, reverse ventricular remodeling and improve cardiac function, in addition to having anti-inflammatory, anti-coagulant and anti-arrhythmic effects (25). The ACE2 channel regulates cardiac remodeling following AMI, and it is crucial for recovery (26). AngII expression in cardiac muscle tissue and the infarction region following AMI is enhanced. The levels of ACE2, Ang1-7 and MasR were increased slightly following AMI (27). Another study demonstrated the ACE2, Ang1-7 and MasR protein expression levels in the cardiac muscle tissue of AMI rats, and the mRNA expression level of AngII was enhanced compared with control rats, confirming RAS activation in the heart following AMI (26). The present study revealed that treatment with diminazene resulted in the reduction of ACE2, AT1R and MasR protein expression levels in AMI rats. Malek et al (15) reported that diminazene may protect the male kidney from renal ischemic-reperfusion injury via the elevation of ACE2, AT1R and MasR protein expression levels. The findings of the present study indicate that the regulation of ACE2/AT1R/MasR axis may influence the protective effect of diminazene in AMI.

In conclusion, the present study demonstrated that diminazene significantly reduced CK and LDH activity levels, and reduced infarct size in vitro following induction of AMI in rats. In addition, this effect was partially mediated by the suppression of inflammation, reduced COX-2 and iNOS levels, and activation of the ACE2/AT1R/MasR axis. These findings suggest that diminazene may protect against AMI via the ACE2/AT1R/MasR axis and may be a novel therapeutic agent for the treatment of AMI.

References

22. Pernomian L, Pernomian L and Baraldi Araújo Restini C: Counter-regulatory effects played by the ACE-Ang II-AT1 and ACE2-Ang-(1-7)-Mas axes on the reactive oxygen species-mediated control of vascular function: perspectives to pharmacological approaches in controlling vascular complications. Vasa 43: 404-414, 2014.

