Gallic acid inhibits the growth of calf pulmonary arterial endothelial cells through cell death and glutathione depletion

WOO HYUN PARK

Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea

Received August 25, 2016; Accepted March 3, 2017

DOI: 10.3892/mmr.2017.7585

Gallic acid (GA) inhibits the growth of calf pulmonary arterial endothelial cell (CPAEC) growth and death, along with the levels of reactive oxygen species (ROS) and glutathione (GSH). GA treatment inhibited the growth of CPAECs at 24 h, and the half-maximal inhibitory concentration (IC_{50}) value of GA was ~30 μM. GA treatment also induced cell death, which was accompanied by a loss of mitochondrial membrane potential (ΔΨ_m). GA treatment in CPAECs resulted in decreased ROS levels, including O_2^•-, whereas the number of GSH-depleted cells increased. Neither a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone) nor buthionine sulfoximine treatment affected GA-induced cell growth inhibition, cell death, ROS and GSH levels in CPAECs, whereas co-treatment with N-acetyl-cysteine (NAC) resulted in enhanced cell growth inhibition, cell death and ΔΨ_m loss in these cells. Although NAC treatment did not significantly influence ROS levels in GA-treated CPAECs, it significantly enhanced GSH depletion in these cells. In conclusion, GA inhibited the growth of CPAECs via cell death, which was associated with GSH depletion rather than alterations to ROS levels.

Abstract. Gallic acid (GA) exhibits a number of cellular effects, including apoptosis, which is associated with oxidative stress. The present study investigated the effects of GA on calf pulmonary arterial endothelial cell (CPAEC) growth and death, along with the levels of reactive oxygen species (ROS) and glutathione (GSH). GA treatment inhibited the growth of CPAECs at 24 h, and the half-maximal inhibitory concentration (IC_{50}) value of GA was ~30 μM. GA treatment also induced cell death, which was accompanied by a loss of mitochondrial membrane potential (ΔΨ_m). GA treatment in CPAECs resulted in decreased ROS levels, including O_2^•-, whereas the number of GSH-depleted cells increased. Neither a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone) nor buthionine sulfoximine treatment affected GA-induced cell growth inhibition, cell death, ROS and GSH levels in CPAECs, whereas co-treatment with N-acetyl-cysteine (NAC) resulted in enhanced cell growth inhibition, cell death and ΔΨ_m loss in these cells. Although NAC treatment did not significantly influence ROS levels in GA-treated CPAECs, it significantly enhanced GSH depletion in these cells. In conclusion, GA inhibited the growth of CPAECs via cell death, which was associated with GSH depletion rather than alterations to ROS levels.

Introduction

Gallic acid (GA) is found in a variety of fruits and foods, and is well absorbed in human body (1). GA has been reported to have diverse biological and pharmacological behaviors, such as antibacterial and antiviral effects (2,3). However, the most notable role of GA is associated with its anticancer activity, which has been reported in lung cancer (4,5), leukemia (6) and prostate cancer (7), as well as breast, gastric, colon, cervical and esophageal cancers (8,9). GA-induced apoptosis has been associated with oxidative stress derived from reactive oxygen species (ROS) (4-6, 10). The central components of ROS are hydrogen peroxide (H_2O_2), hydroxyl radical (OH) and superoxide anion (O_2^•-), which are generated as by-products of mitochondrial respiration or certain oxidases (11). O_2^•- is metabolized to H_2O_2 by superoxide dismutases, and H_2O_2 is further detoxified to O_2 and H_2O by catalase or glutathione (GSH) peroxidases (11). Oxidative stress occurs due to the overproduction of ROS and/or the decreased decomposition of them. GA-induced cell death has also been correlated with mitochondrial dysfunction and increased intracellular Ca^{2+} level (4,5, 12); however, GA treatment did not lead to cytotoxicity in normal rat fibroblast and endothelial cells (13). In addition, GA exhibited potential antiapoptotic effects in normal human lymphocytes (14) and protected rat insulinoma RINm5F β-cells from glucolipotoxicity through its antiapoptotic mechanism (15). Controversially, GA was suggested to have pro-oxidative in addition to antioxidative properties, depending on the levels of iron or H_2O_2 (16,17). Therefore, additional studies are required to reassess the cellular properties of GA under diverse conditions.

Vascular endothelial cells (ECs) are involved in the regulation of inflammation, blood pressure and angiogenesis (18). Vascular ECs experience a broad range of oxidative stress, which may ultimately lead to endothelial dysfunction through the induction of apoptosis (19). Angiogenesis is a crucial step in the transition of a dormant tumor into a malignant state; the proliferation of ECs is an early step during sprouting angiogenesis. Despite important roles of vascular ECs in tumor biogenesis and development, the effects of GA on ECs are relatively poorly understood. In the vasculature, ROS serve physiological and pathophysiological roles through the regulation of numerous cellular processes, including cell proliferation, death and survival (19). Therefore, further research is required to explore the cellular effects of GA on ECs in relation to the...
levels of ROS and GSH expression. Calf pulmonary arterial ECs (CPAECs) are an established cell model for both cellular and molecular endothelial cell research (20,21).

The present study investigated the effects of GA exposure on CPAEC growth and death in relation to ROS and GSH levels, and examined whether the antioxidant N-acetylcysteine (NAC) and the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) were able to affect GA-induced CPAEC death.

Materials and methods

Cell culture. CPAECs were obtained from Korean Cell Line Bank (Seoul, Korea) and were cultured in RPMI-1640 medium (GE Healthcare Life Sciences, Little Chalfont, UK) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) and 1% penicillin-streptomycin (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA). CPAECs were routinely grown in 100 mm plastic tissue culture dishes (Nalge Nunc International, Penfield, NY, USA) in humidified incubator containing 5% CO2 at 37°C and harvested with a solution of trypsin-EDTA (Gibco; Thermo Fisher Scientific, Inc.) while in the logarithmic phase of growth.

Reagents. GA (Sigma-Aldrich; Merck KGaA) was dissolved in 100% ethanol to 200 mM, and used at the indicated concentrations. The pan-caspase inhibitor benzoylcarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK; R&D Systems, Inc., Minneapolis, MN, USA) was dissolved in DMSO (Sigma-Aldrich; Merck KGaA) to 10 mM. NAC and BSO were obtained from Sigma-Aldrich (Merck KGaA). NAC 200 mM as a stock solution was dissolved in the buffer of 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid [HEPES; (pH 7.0)], and BSO 100 mM as a stock solution was dissolved in the buffer of 200 mM as a stock solution was dissolved in distilled water. Based on a previous study (22), cells were pre-incubated at 37°C for 1 h with Z-VAD-FMK (15 µM), NAC (2 mM) or BSO (10 µM), followed by treatment with the GA (25 µM) at 37°C for 24 h before the assays were performed.

Cell proliferation assay. Viable and dead cell numbers and cell proliferation were determined by trypan blue staining and MTT dye absorbance by living cells, respectively, as previously described (23,24). Briefly, 2x104 cells/well in 96-well microtiter plates (Nalge Nunc International) were seeded for MTT assays. The cells which indicated amounts of GA (between 0 and 50 µM) at 37°C for 24 h. The prepared cells were washed twice with cold PBS and then resuspended in 500 µl of binding buffer [10 mM HEPES/NaOH (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2] at a concentration of 1x106 cells/ml. Then 5 µl of annexin V-FITC (BD Biosciences) and 10 µl of 20 µg/ml PI were added to these cells. Annexin V-FITC/PI staining was analyzed with a FACStar flow cytometer (BD Biosciences) and CellQuest Pro software (version 2.0; BD Biosciences).

Measurement of mitochondrial membrane potential (ΔΨm). ΔΨm was measured using the Rhodamine 123 mitochondrial-specific fluorescent dye (Sigma-Aldrich; Merck KGaA; Ex/Em=485/535 nm), as previously described (23). Briefly, 1x106 cells in 60 mm culture dish (Nalge Nunc International) were incubated with the indicated amounts of GA with or without Z-VAD-FMK, NAC or BSO at 37°C for 24 h. Cells were washed twice with cold PBS and then resuspended in 500 µl of binding buffer [10 mM HEPES/NaOH (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2] at a concentration of 1x106 cells/ml. Then 5 µl of annexin V-FITC (BD Biosciences) and 10 µl of 20 µg/ml PI were added to these cells. Annexin V-FITC/PI staining was analyzed with a FACStar flow cytometer (BD Biosciences) and CellQuest Pro software (version 5.1; BD Biosciences).

Detection of intracellular ROS levels. Intracellular ROS levels were assessed with the non-fluorescent probe dye 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA; Ex/Em=495/529 nm; Molecular Probes; Thermo Fisher Scientific, Inc.); cleavage of the acetate groups converts H2DCFDA into the highly fluorescent 2′,7′-dichlorofluoresceine (DCF). Dihydroethidium (DHE; Ex/Em=518/605 nm; Molecular Probes; Thermo Fisher Scientific, Inc.) is a fluorogenic probe that is highly selective for O2·−. Briefly, 1x105 cells in 60 mm culture dish (Nalge Nunc International) were incubated with the indicated amounts of GA with or without Z-VAD-FMK, NAC or BSO at 37°C for 24 h. Cells were harvested with a solution of trypsin-EDTA (Gibco; Thermo Fisher Scientific, Inc.) in humidified incubator containing 5% CO2 at 37°C. Medium in plates was removed by aspiration. Then 1x106 cells in 60 mm culture dish (Nalge Nunc International) were incubated with the indicated amounts of GA and/or Z-VAD-FMK, NAC or BSO at 37°C for 24 h. Cells were then washed in PBS and fixed in 70% ethanol at 4°C for 1 h. Cells were then washed with PBS and then incubated with PI (10 µg/ml) with simultaneous treatment with RNase at 37°C for 30 min. Cellular DNA content was measured with a FACStar Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and analyzed using lysis II and Cellfit software (version 2.0; BD Biosciences).

Annexin V-fluorescein isothiocyanate (FITC)/PI staining for cell death detection. Cell death was measured by staining cells with Annexin V-FITC (Ex/Em=488/519 nm; Molecular Probes; Thermo Fisher Scientific, Inc.) and PI (Ex/Em=488/617 nm; Sigma-Aldrich; Merck KGaA), as previously described (26). Briefly, 1x105 cells in 60 mm culture dish (Nalge Nunc International) were incubated with the indicated amounts of GA with or without Z-VAD-FMK, NAC or BSO at 37°C for 24 h. The prepared cells were washed twice with cold PBS and then resuspended in 500 µl of binding buffer [10 mM HEPES/NaOH (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2] at a concentration of 1x106 cells/ml. Then 5 µl of annexin V-FITC (BD Biosciences) and 10 µl of 20 µg/ml PI were added to these cells. Annexin V-FITC/PI staining was analyzed with a FACStar flow cytometer (BD Biosciences) and CellQuest Pro software (version 5.1; BD Biosciences).

Sub-G1 analysis. Cells at the sub-G1 phase were determined by staining with propidium iodide [PI; Sigma-Aldrich; Merck KGaA; excitation (Ex)/emission (Em)=488/617 nm], as previously described (25). Briefly, 1x106 cells cultured in RPMI-1640 medium (GE Healthcare Life Sciences) supplemented with 10% FBS (Sigma-Aldrich; Merck KGaA) and 1% penicillin-streptomycin (Gibco; Thermo Fisher Scientific, Inc.) in 60-mm culture dish (Nalge Nunc International) were exposed to the indicated amounts of GA and/or Z-VAD-FMK, NAC or BSO at 37°C for 24 h. Cells were then washed in PBS and fixed in 70% ethanol at 4°C for 1 h. Cells were then washed with PBS and then incubated with PI (10 µg/ml) with simultaneous treatment with RNase at 37°C for 30 min. Cellular DNA content was measured with a FACStar Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and analyzed using lysis II and Cellfit software (version 2.0; BD Biosciences).
Figure 1. Effects of GA on CPAEC proliferation. Exponentially growing CPAECs were treated with the indicated concentrations of GA for 24 h. (A) Total viable vs. dead cell numbers were assessed by trypan blue cell counting. (B) Cell proliferation was assessed by MTT assay. *P<0.05 compared with untreated (0 µM GA) control group. CPAEC, calf pulmonary arterial endothelial cell; GA, gallic acid; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

for 24 h. Following incubation, cells were washed with PBS and incubated with H₂DCFDA (20 µM) or DHE (20 µM) at 37°C for 30 min. DCF and DHE fluorescence was detected with a FACStar flow cytometer (BD Biosciences). ROS and O₂•⁻ levels were expressed as the mean fluorescence intensity, which was calculated by CellQuest Pro software (version 5.1; BD Biosciences).

Detection of the intracellular glutathione (GSH). Cellular GSH expression levels were analyzed using 5-chloromethylfluorescein diacetate (CMFDA; Ex/Em=522/595 nm; Molecular Probes; Thermo Fisher Scientific, Inc.), as previously described (27). Briefly, 1x10⁶ cells in 60 mm culture dish (Nalge Nunc International) were incubated with the indicated amounts of GA with or without Z-VAD-FMK, NAC or BSO at 37°C for 24 h. The cells were then washed in PBS. They were then incubated with 5 µM CMFDA at 37°C for 30 min. Fluorescence intensity of the cleaved CMF was determined using a FACStar flow cytometer (BD Biosciences) and analyzed using CellQuest Pro software (version 5.1; BD Biosciences).

Statistical analysis. The results represent the mean of at least three independent experiments ± standard deviation. Student's t-test or one-way analysis of variance with post hoc analysis using Tukey's multiple comparison test for parametric data. P<0.05 was considered to indicate a statistically significant difference.

Results

Effects of GA on cell growth, cell death and ΔΨ_m in CPAECs. The effects of GA exposure on the growth of CPAECs were examined by counting the number of trypan blue positive- and negative-stained cells. Cells treated with various concentrations of GA for 24 h exhibited a dose-dependent decrease in the population of viable (trypan blue negative) CPAEC cells (Fig. 1A), whereas the number of dead (trypan blue positive) cells increased. The ratio of dead cells to viable cells rose in a dose-dependent manner. Changes in cell proliferation were assessed by MTT assay. CPAEC cells that were treated with GA for 24 h exhibited a reduction in proliferation, and the half-maximal inhibitory concentration (IC₅₀) value of GA in CPAEC cells was ~30 µM at 24 h (Fig. 1B).

In addition, GA treatment enhanced the number of sub-G1 cells, which indicates cell death, in a dose-dependent manner (Fig. 2A). At a dose of 25 µM GA, the number of sub-G1 cells increased ~13% compared with the untreated control CPAECs (Fig. 2A). Whether GA was able to induce apoptosis in CPAECs was examined further. As shown in Fig. 2B, the number of Annexin V-FITC-stained cells increased in CPAECs as the concentration of GA increased. At a dose of 25 µM GA, the number of Annexin V-FITC-stained cells increased by ~16% compared with the untreated control CPAECs (Fig. 2B). Since apoptosis is closely related to a collapse of ΔΨ_m, the effects of GA on ΔΨ_m were assessed using rhodamine 123 dye. Treatment with GA triggered the loss of ΔΨ_m [that is, (-) rhodamine 123 cells] in CPAECs in a dose-dependent manner (Fig. 2C). CPAEC cells treated with 25 µM GA exhibited ~10% decrease in ΔΨ_m compared with untreated control cells, whereas 50 µM GA treatment strongly increased the loss by ~70% (Fig. 2C).

Effects of GA on intracellular ROS and GSH levels in CPAECs. To assess the levels of intracellular ROS in GA-treated CPAECs at 24 h, H₂DCFDA and DHE fluorescent dyes were used. ROS levels, as measured by mean DCF fluorescence intensity, were not significantly altered in CPAECs treated with 5, 10 or 25 µM GA, whereas the ROS level was significantly decreased by 50 µM GA treatment, compared with untreated control cells (Fig. 2D). The level of red fluorescence derived from DHE, which indicates the level of O₂•⁻ in the cell, decreased significantly in CPAECs treated with 5, 10 or 25 µM GA (Fig. 2E); however, the level was not significantly altered when cells were treated with 50 µM GA.

Finally, changes in the levels of GSH expression in CPAECs were analyzed using a CMFDA fluorescence dye. GA treatment led to a dose-dependent increase in the number of GSH-depleted cells ([(-) CMF; Fig. 2F]). CPAECs treated with 25 µM GA exhibited ~11% increase in the number of GSH-depleted cells compared with untreated control cells.

Effects of Z-VAD-FMK, NAC and BSO on cell growth, cell death and ΔΨ_m in GA-treated CPAECs. In these experiments, 25 µM GA was used as a suitable dose to differentiate the levels of proliferation and apoptosis in the presence or absence of Z-VAD-FMK (15 µM), NAC (2 mM) or BSO (10 µM) since the IC₅₀ value of GA in CPAEC cells was ~30 µM. Treatment with Z-VAD-FMK, NAC or BSO alone
did not significantly affect the growth of CPAECs at 24 h (Fig. 3A). GA-treated CPAEC cells were unaffected by co-treatment with either Z-VAD-FMK or BSO, whereas the GA-induced growth inhibition was strongly enhanced by NAC exposure (Fig. 3A).

In relation to cell death and ΔѰₘ, the number of sub-G1 cells in GA-treated CPAECs that were also treated with Z‑VAD‑FMK and BSO did not significantly change, whereas co-treatment with NAC resulted in an increase in the number of CPAEC cells at sub-G1 (Fig. 3B). Similarly, neither Z-VAD-FMK nor BSO treatment affected the number of Annexin V-FITC-stained cells in GA-treated CPAECs, whereas GA and NAC co-treatment significantly increased the number in these apoptotic cells (Fig. 3C and D). Treatment with 25 µM GA did not significantly trigger necrotic cell death (that is, cells staining positive for PI and negative for Annexin V-FITC) in CPAECs (Fig. 3C and E). However, NAC co-treatment strongly induced necrotic cell death in CPAECs treated with 25 µM GA, whereas treatment with Z-VAD-FMK or BSO did not (Fig. 3C and E). Similarly, neither Z-VAD-FMK nor BSO co-treatment was able to affect the level of ΔѰₘ loss [as measured by (-) rhodamine 123 staining] in GA-treated CPAECs, but co-treatment with NAC significantly augmented the loss of ΔѰₘ in these cells (Fig. 4A and B).

Effects of Z-VAD-FMK, NAC or BSO on ROS, O₂⁻ and GSH levels in GA-treated CPAECs. ROS and GSH levels in GA-treated CPAECs were examined to assess any changes in their expression levels due to treatment with Z-VAD-FMK, NAC or BSO at 24 h. Neither Z-VAD-FMK nor NAC treatment resulted in a change in ROS levels (as determined by DCF fluorescence intensity) in GA-treated CPAECs (Fig. 5A); although co-treatment with Z-VAD-FMK, NAC or BSO significantly increased the GA-induced reduction in O₂⁻ levels in CPAEC cells (Fig. 5B). Cells treated BSO alone exhibited a significant increase in O₂⁻ level compared with untreated control CPAECs (Fig. 5B). Although co-treatment with Z-VAD-FMK or BSO did not significantly affect the levels of GSH depletion (as measured by absence of CMF fluorescence) in GA-treated CPAECs, cells co-treated with NAC significantly increased the number of GSH-depleted cells (Fig. 5C and D). Notably, cells treated with BSO alone exhibited an increased number of GSH-depleted cells compared with untreated control CPAECs (Fig. 5C and D).

Discussion

A number of previous studies have reported that GA exposure inhibited the growth of HeLa cervical cancer cells and Calu-6 and A549 lung cancer cells, and the IC₅₀ was between 30 and 150 µM in these cell lines (4,5,9). In the present study, GA treatment decreased the growth of CPAECs in a dose-dependent manner, with the IC₅₀ value of ~30 µM at 24 h. Conversely,
GA treatment was previously demonstrated to have no relative cytotoxicity in normal fibroblasts and ECs (13,28,29). CPAECs appeared less resistant to GA treatment compared with other normal cells, and instead they were similar to cancer cells in their susceptibility to GA exposure. These differences may be due to the differing activities and antioxidant systems in each cell line.

GA treatment has previously been demonstrated to induce apoptosis in cancer cells through mitochondrial dysfunction (4,5,10). In the present study, GA exposure appeared to induce apoptosis in CPAECs, as evidenced by the increase in the number of sub-G1 cells and Annexin V-FITC-positive staining cells, and it triggered the loss of $\Delta \Psi_m$. The dose-dependent loss of $\Delta \Psi_m$ corresponded to the dose-dependent rise in Annexin V-FITC staining cells, supporting the hypothesis that GA-induced cell death may be tightly correlated with the collapse of $\Delta \Psi_m$. In particular, the tested dose of 15 µM Z-VAD-FMK used in the present study did not affect cell death or $\Delta \Psi_m$ in GA-treated CPAECs. However, 15 µM Z-VAD-FMK was reported to significantly reduce cell death and $\Delta \Psi_m$ loss in CPAECs treated with pyrogallol, a derivative of GA (20). Therefore, this result suggested that the activation of caspases is not closely related to GA-induced apoptosis in CPAECs. It has also been reported that Z-VAD-FMK effectively prevented GA-induced apoptosis in lung cancer cells (30). Therefore, the modes of caspase activation during GA-induced apoptosis may be dependent on cell types (e.g., normal cells vs. cancer cells) and the difference requires further study.

GA exhibits both pro- and antioxidative properties (16,17). Results from a number of previous studies suggested that GA-induced apoptosis may be associated with oxidative stress derived from ROS (4-6,10). However, treatment with the lower doses of GA (5-25 µM) did not increase ROS levels in CPAECs in the present study, whereas a dose of 50 µM GA induced CPAEC death and decreased ROS levels. Conversely,
Figure 4. Effects of Z-VAD-FMK, NAC or BSO on \(\Delta \Psi _{m} \) in GA-treated CPAECs. Exponentially growing cells were pretreated with Z-VAD-FMK (15 \(\mu \)M), NAC (2 mM) or BSO (10 \(\mu \)M), followed by GA (25 \(\mu \)M) for 24 h. \(\Delta \Psi _{m} \) was determined in CPAECs by measuring rhodamine 123 fluorescence levels with a FACStar flow cytometer. (A) Representative FACStar flow cytometry plots for (+) rhodamine 123 staining in CPAECs. M1 indicates \(\Delta \Psi _{m} \) loss. (B) Percentage of rhodamine 123-negative (\(\Delta \Psi _{m} \) loss) cells from the M1 region in A. *P<0.05 compared with untreated (0 \(\mu \)M GA) control group; **P<0.05 compared with GA-treated control group. \(\Delta \Psi _{m} \), mitochondrial membrane potential; BSO, L-buthionine sulfoximine; CPAEC, calf pulmonary arterial endothelial cell; GA, gallic acid; NAC, N-acetyl cysteine; Z-VAD-FMK, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone.

Figure 5. Effects of Z-VAD-FMK, NAC or BSO on ROS and GSH levels in GA-treated CPAECs. Exponentially growing cells were pretreated with Z-VAD-FMK (15 \(\mu \)M), NAC (2 mM) or BSO (10 \(\mu \)M), followed by GA (25 \(\mu \)M) for 24 h. ROS and GSH levels were measured using a FACStar flow cytometer. (A) Mean ROS levels, as measured by DCF fluorescence intensity. (B) Mean \(O_2^- \) levels, as measured by DHE fluorescence intensity. (C) Representative flow cytometry plots for (+) CMF staining in CPAECs. (D) Percentage of GSH-depleted cells, as measured by (-) CMF fluorescence from the M1 region in C. *P<0.05 compared with untreated (0 \(\mu \)M GA) control group; **P<0.05 compared with GA-treated control group. CMF, calf pulmonary arterial endothelial cell; DCF, 2',7'-dichlorofluorescein; DHE, dihydroethidium; GA, gallic acid; GSH, glutathione; NAC, N-acetyl cysteine; \(O_2^- \), superoxide anion; ROS, reactive oxygen species; Z-VAD-FMK, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone.
5 to 25 µM GA treatment significantly decreased O₂⁻ levels in CPAECs, whereas exposure to 50 µM GA had no effect. Therefore, in the present study, GA treatment appeared to exhibit more antioxidative than pro-oxidative properties in CPAECs. Notably, although NAC exposure did not affect ROS levels in GA-treated CPAECs, NAC co-treatment did result in reduced cell proliferation and increased cell death and ΔΨm loss in these cells; NAC treatment also strongly induced necrotic cell death in CPAECs treated with GA. A previous study reported a similar NAC-induced increase in growth inhibition and apoptotic death in GA-treated lung cancer cells (5). In the present study, neither Z-VAD-FMK nor BSO treatment significantly influenced ROS levels or cell death in GA-treated CPAECs. Cells treated with BSO alone exhibited increased O₂⁻ levels without triggering cell death. Overall, the results from the present study suggest that GA-mediated CPAEC death is not related to oxidative stress. The precise roles of ROS in GA-induced CPAEC death require further investigation.

In general, apoptotic effects have been reported to be inversely proportional to GSH content in cells (22,31,32). The intracellular GSH content may have a decisive effect on GA-induced cell death (4,5,33). Similarly, results from the present study demonstrated that GA treatment dose-dependently decreased the number of GSH-positive cells in CPAECs. Z-VAD-FMK co-treatment did not affect the GA-induced depletion of GSH in CPAECs. In addition, NAC treatment, which showed increases in both necrotic and apoptotic cell deaths by GA, significantly augmented GSH depletion in these cells. Although it is recognized that NAC contains a thiol group and is a GSH precursor, this agent did not seem to be a GSH precursor in GA-treated CPAECs. However, NAC significantly attenuated both GSH depletion and cell death in propyl gallate- and MG132-treated CPAECs (21,34). Thus, NAC may or may not be a GSH precursor depending on other agents used in co-treatments. In addition, when treated with BSO alone, there was a significant increase in the number of GSH-depleted cells; however, co-treatment with GA did not augment GSH depletion CPAECs. By contrast, previous studies have reported that BSO co-treatment enhanced GSH depletion and cell death in GA-treated lung cancer cells, fibroblasts and normal ECs (5,28,33), and decreased GSH levels in MG132-treated CPAECs (35). Therefore, these data suggested that GSH content may serve a vital role in GA-induced cell death, and that BSO exposure may influence GSH levels dependent on cell type and co-incubation drugs.

In conclusion, GA exposure induced growth inhibition and death in CPAECs, which were revealed to be caused by GSH depletion rather than changes in ROS levels. The present data may provide useful information to understand the antiproliferative effects of GA in ECs, particularly CPAECs, in relation to the cellular changes in ROS and GSH levels.

Acknowledgements

The present study was supported by a grant from the National Research Foundation of Korea funded by the Korean government (Ministry of Science ICT and Future Planning; grant no. 2016R1A2B4007773).

References

