MicroRNA-212 inhibits colorectal cancer cell viability and invasion by directly targeting PIK3R3

JIAN ZHANG1*, YONGKANG ZHANG1*, XIAOYUN LI1, HONGBO WANG1, QUAN LI2 and XIAOFENG LIAO1

Departments of 1General Surgery and 2Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China

Received April 13, 2017; Accepted September 5, 2017

DOI: 10.3892/mmr.2017.7552

Abstract. Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-associated mortalities worldwide. Emerging evidence has shown that abnormal microRNA (miRNA) expression contributes to CRC carcinogenesis and progression by inhibiting the expression of their target genes. Therefore, investigating the expression patterns and roles of miRNAs specifically involved in CRC formation, and progression would help expand our knowledge on CRC and provide novel therapeutic targets for CRC treatment. Previous studies suggest that miR-212 is involved in the carcinogenesis and progression of multiple human cancer types. In this study, miR-212 was significantly downregulated in CRC tissues and cell lines. Functional experiments demonstrated that miR-212 overexpression inhibited the in vitro viability and invasion of CRC cells. In addition, phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) was confirmed as the direct target of miR-212 in CRC. Furthermore, PIK3R3 was highly expressed in CRC tissues and inversely correlated with miR-212 expression. Increased PIK3R3 expression effectively rescued the tumor-suppressing roles of miR-212 on CRC cell viability and invasion. Moreover, miR-212 upregulation blocked the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway in CRC cells. These findings suggest that miR-212 acts as a tumor suppressor in CRC by directly targeting PIK3R3 and regulating the AKT/mTOR signalling pathway. Thus, miR-212 may serve as an effective therapeutic target for the treatment of patients with CRC.

Introduction

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related deaths worldwide (1), with almost 1.23 million new cases and 0.6 million deaths per year (2). The initiation and progression of CRC are influenced by several risk factors, such as colon polyps, ulcerative colitis, age, smoking, obesity, environment, lifestyle, diet and genetic and epigenetic factors (3,4). Current standard treatments for CRC patients include surgical resection, chemotherapy, radiotherapy or a combination of these strategies (5). Despite remarkable progresses in the diagnosis and therapy of CRC patients, the prognosis of these patients remains dismal (6). Recurrence and metastasis are the major causes of death in CRC patients (7). Therefore, elucidating the mechanisms involved in the formation and progression of CRC and identifying novel therapeutic methods for CRC patients are urgently needed.

MicroRNAs (miRNAs) are a recently discovered large group of endogenous, non-coding, single-stranded and short RNA molecules with approximately 19-23 nucleotides in length (8). MiRNAs act as an endogenous regulator of gene expression by binding to the 3'-untranslated regions (3'-UTRs) of their target genes, leading to translational inhibition or mRNA degradation (9). Increasing evidence has indicated that >30% of genes are regulated by miRNAs and play important roles in various cellular biological processes, including proliferation, apoptosis, differentiation, movement, migration and survival (10-12). Dysregulated miRNAs have been closely correlated with tumorigenesis, promotion and development by acting on many oncogenes and tumor suppressors (13-15). Highly expressed miRNAs serve as oncogenes by negatively regulating tumor suppressor genes (16). By contrast, miRNAs expressed at low levels may act as tumor suppressors by clocking oncogenes (17). Therefore, exploring the expression and biological functions of miRNAs in CRC may provide potential diagnostic and therapeutic targets for the treatment of CRC patients.

Previous studies reported that aberrant miR-212 expression contributes to tumor progression in various types of human cancers (18-20). In this study, we further investigate...
the expression, effects and related molecular mechanisms of miR-212 in CRC.

Materials and methods

Tissue specimens. Human CRC tissues and corresponding adjacent non-neoplastic tissues were collected between October 2014 and March 2016 from surgical specimens from 28 patients with CRC at Xiangyang Central Hospital (Xiangyang, China). None of these patients were treated with chemotherapy or radiotherapy before surgery. These specimens were frozen immediately after resection and stored at -80˚C until further use. The study was approved by the Ethical Review Committees of Xiangyang Central Hospital, and all patients gave informed consent prior to specimen collection according to institutional guidelines.

Cell culture and transfection. Five human CRC cell lines (HCT116, HT29, LoVo, SW480, SW620) and normal human colon epithelial cell line FHC were purchased from American Type Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) containing 10% heat-inactivated foetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.) 100 U/ml streptomycin and 100 U/ml penicillin and grown at 37˚C in a humidified incubator with 5% CO2.

MiR-212 mimics and miRNA mimics negative control (miR-NC) were obtained from Ribobio Co., Ltd. (Guangzhou, China). PIK3R3 overexpression plasmid without the promoter region, pCI-PIK3R3 (Invitrogen; Thermo Fisher Scientific, Inc.), was used to transfect the selected cell lines. miR-212 mimics (100 pmol), miR-NC (100 pmol), or cotransfected with miR-212 mimics (100 pmol) and pcDNA3.1-PIK3R3 (1 µg) using Lipofectamine 2000 transfection reagent (Invitrogen; Thermo Fisher Scientific, Inc.), according to the manufacturer's protocol.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA was extracted from tissue samples or cells using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc.) following the manufacturer's instructions. The quantity and quality of total RNA was assessed using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Inc.) following the manufacturer's instructions.

Transwell invasion assay. Cell invasive ability was evaluated with Transwell chambers (8-µm pores; Corning Costar Corp, Cambridge, MA, USA) coated with Matrigel (BD Biosciences, San Jose, CA, USA). Briefly, transfected cells were collected at 48 h post-transfection and suspended in FBS-free DMEM culture medium. 5x104 transfected cells were seeded into the upper chamber. DMEM containing 10% FBS was placed in the lower compartment as a chemoattractant. After 24 h incubation at 37˚C with 5% CO2, non-invasive cells were wiped out carefully with cotton swab. The invasive cells on the underside of the filter membrane were fixed with 70% ethanol for 20 min and stained with 0.1% crystal violet for 10 min. Invasive cells were photographed and counted under a IX71 inverted microscope (Olympus, Tokyo, Japan) at magnification, x200 in 5 randomly selected microscopic fields.

Bioinformatics analysis. The bioinformatics software PICTA (http://pictar.mdc-berlin.de/) and TargetScan (http://www.targetscan.org/) were adopted to predict candidate targets of miR-212.

Luciferase reporter assay. Luciferase reporter plasmid containing predicted miR-212 seed-matching sites in the 3'-UTR of PIK3R3 and corresponding mutant sites were constructed and confirmed by Ribobio. The constructed vectors were named as pmIR-PIK3R3-3'-UTR Wild-type (Wt) and pmIR-PIK3R3-3'-UTR mutant (Mut), respectively. For luciferase reporter assay, cells were seeded into 24-well plates and transfected with miR-212 mimics or miR-NC, and together with luciferase reporter plasmid using Lipofectamine 2000, according to the manufacturer's protocol. At 48 h after transfection, cells were harvested and luciferase activities were measured using the Dual-Luciferase Reporter Assay System (Promega), following the protocol provided by the manufacturer. Firefly luciferase activities were used to normalize
Renilla luciferase activity. All experiments were performed in triplicate and repeated at least three times.

Western blot analysis. Total protein was extracted from cells using RIPA lysis buffer (Beyotime, Shanghai, People's Republic of China) supplemented with a protease inhibitor cocktail (Sigma), according to the manufacturer's instruction. Bicinchoninic Acid Protein Assay kit (Beyotime, Shanghai, People's Republic of China) was performed to detect concentration of total protein. Equivalent amounts of proteins were separated on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA, USA). After that, the membranes were blocked with 5% fat-free milk for 2 h at room temperature and incubated with primary antibodies at 4˚C overnight. The primary antibodies used in this study include mouse anti-human monoclonal PIK3R3 antibody (sc-376615; 1:1,000 dilution), mouse anti-human monoclonal p-AKT antibody (sc-271966; 1:1,000 dilution), mouse anti-human monoclonal AKT antibody (sc-56878; 1:1,000 dilution), mouse anti-human monoclonal p-mTOR ser 2481 antibody (sc-293132; 1:1,000 dilution), mouse anti-human monoclonal mTOR antibody (sc-293089; 1:1,000 dilution) and mouse anti-human monoclonal GAPDH antibody (sc-32233; 1:1,000 dilution; all Santa Cruz Biotechnology, CA, USA). Then, the membranes were washed three times with Tris-buffered saline containing Tween-20 (TBST) and further incubated with goat anti-mouse horseradish peroxidase-conjugated secondary antibody (sc-2005; 1:5,000 dilution; Santa Cruz Biotechnology) at room temperature for 1 h. ECL Protein Detection kit (Millipore) was used to visualize the proteins. Optical densities were analyzed with ImageJ software (NIH, Bethesda, MD, USA).

Statistical analysis. Data are presented as the mean ± standard error and analyzed with SPSS 17.0 (SPSS, Inc., Chicago, IL, USA) using Student's t-test or one way ANOVA test. Student-Newman-Keuls (SNK) was used to compare between two groups in multiple groups. P-value <0.05 was considered to indicate a statistically significant difference.

Results

MiR-212 is downregulated in CRC tissue specimens and cell lines. To investigate the status of miR-212 in CRC, RT-qPCR was used to analyse the expression levels of miR-212 in 28 pairs of CRC tissues and corresponding adjacent non-neoplastic tissues. MiR-212 was obviously downregulated in CRC tissues compared with adjacent non-neoplastic tissues (Fig. 1A, P<0.05). Then, the expression levels of miR-212 in CRC cell lines (HCT116, HT29, LoVo, SW480 and SW620) and normal human colon epithelium cell line FHC were examined. The expression levels of miR-212 significantly reduced in all CRC cell lines compared with that in the FHC cell line (Fig. 1B, P<0.05). Among the five CRC cell lines, HCT116 and SW620 showed the lowest miR-212 expression. Thus, HCT116 and SW620 cells were selected for further investigation.

MiR-212 inhibits the viability and invasion of CRC cells. To observe the functional role of miR-212 in CRC cells, HCT116 and SW620 cells were transfected with miR-212 mimics or miR-NC. After transfection, RT-qPCR analysis demonstrated that miR-212 was remarkably upregulated in the HCT116 and SW620 cells transfected with miR-212 mimics compared with the cells transfected with miR-NC (Fig. 2A, P<0.05). The role of miR-212 in CRC cell viability was then evaluated using MTT assay. As shown in Fig. 2B, miR-212 overexpression decreased the viability of HCT116 and SW620 cells compared with the miR-NC groups (P<0.05). In addition, Transwell invasion assay showed that miR-212 upregulation inhibited the invasion capacities of HCT116 and SW620 cells (Fig. 2C, P<0.05). Overall, these data indicate the anti-viability and anti-metastasis roles of miR-212 in CRC.

PIK3R3 is a novel target of miR-212 in CRC. MiRNAs exert functional roles mainly by base-pairing with the complementary sequence of their target genes (9). Hence, bioinformatics analysis was used to predict the potential target genes of miR-212. PIK3R3, which is associated with CRC tumorigenesis and development (22), was chosen for further confirmation (Fig. 3A). Then, PIK3R3 mRNA expression in CRC tissues and corresponding adjacent non-neoplastic tissues was detected using RT-qPCR. Results showed that the
mRNA expression of PIK3R3 was dramatically upregulated in CRC tissues compared with adjacent non-neoplastic tissues (Fig. 3B, P<0.05). In addition, Spearman’s correlation analysis revealed an inverse correlation between miR-212 and PIK3R3 mRNA expression (Fig. 3C, r=-0.6185, P<0.001).

The mRNA and protein expression levels of PIK3R3 in HCT116 and SW620 cells were measured after transfection with miR-212 mimics or miR-NC via RT-qPCR and Western blot analyses to investigate the negative regulation effects of miR-212 on endogenous PIK3R3 expression. Remarkable inhibition of PIK3R3 expression at both mRNA and protein levels was observed in the HCT116 and SW620 cells transfected with miR-212 mimics compared with those transfected with miR-NC (Fig. 3D and E, P<0.05). Moreover, luciferase reporter assay was conducted to identify the relationship between miR-212 and the 3’-UTR of PIK3R3. Results revealed that the restoration expression of miR-212 reduced the luciferase activities of pMIR-PIK3R3-3’-UTR Wt (Fig. 3F, P<0.05) but exerted no effect on the luciferase activities of pMIR-PIK3R3-3’-UTR Mut. Overall, these
findings suggest that PIK3R3 is a novel target of miR-212 in CRC.

Upregulation of PIK3R3 reverses the tumor-suppressing effects of miR-212 on CRC cells. Rescue experiments were performed to investigate whether the tumor suppressive role of miR-212 in CRC is mediated by inhibiting the expression of PIK3R3. HCT116 and SW620 cells were transfected with miR-212 mimics in the presence or absence of pcDNA3.1-PIK3R3. Western blot analysis demonstrated that miR-212-induced PIK3R3 downregulation was rescued following co-transfection with pcDNA3.1-PIK3R3 (Fig. 4A, P<0.05). Moreover, PIK3R3 upregulation rescued the suppressive effects of miR-212 overexpression on the viability (Fig. 4B, P<0.05) and invasion (Fig. 4C, P<0.05) of HCT116 and SW620 cells. These results clearly show that miR-212 exerts tumor-suppressive roles in CRC, at least in part, by suppressing PIK3R3.

MiR-212 inactivates the AKT/mTOR signalling pathway. Previous studies demonstrated that PIK3R3 plays important roles in tumor formation and progression by regulating the AKT/mTOR signalling pathway (23-25). Hence, Western blot analysis was performed to determine p-AKT, AKT,
ZHANG et al: miR-212 IN COLORECTAL CANCER

Discussion
Emerging evidence has shown that abnormal miRNA expression contributes to CRC carcinogenesis and progression by inhibiting the expression of their target genes (26-28). Therefore, investigating the expression patterns and roles of miRNAs specifically involved in CRC formation and

Figure 4. Overexpression of PIK3R3 reverses the tumor-suppressive effects of miR-212 in CRC cell viability and invasion. (A) PIK3R3 expression on protein level was detected in HCT116 and SW620 cells co-transfected with miR-212 mimics in the presence or absence of the PIK3R3 overexpression plasmid. (B and C) Cell viability and invasion in HCT116 and SW620 cells co-transfected with miR-212 mimics in the presence or absence of the PIK3R3 overexpression plasmid were assessed using MTT assay and Transwell invasion assay, respectively. *P<0.05 compared with respective control. NC, negative control; miR, microRNA; CRC, Colorectal cancer; PIK3R3, phosphoinositide-3-kinase regulatory subunit 3.

p-mTOR and mTOR expression in the HCT116 and SW620 cells transfected with miR-212 mimics or miR-NC. MiR-212 overexpression decreased p-AKT and p-mTOR expression, whereas transfection with miR-212 mimics did not affect total AKT and mTOR protein levels (Fig. 5). These results indicate that miR-212 inhibits CRC progression by directly targeting PIK3R3 and regulating the AKT/mTOR signalling pathway.
progression would greatly help expand our knowledge on CRC and provide novel therapeutic targets for CRC treatment. In the present study, miR-212 expression was significantly downregulated in CRC tissues and cell lines. In addition, increased miR-212 expression inhibited the viability and invasion of CRC cells in vitro. Furthermore, PIK3R3 was identified as a novel direct target of miR-212 in CRC. Importantly, miR-212 upregulation blocked the AKT/mTOR signalling pathway. Overall, the present study demonstrated that miR-212 expression was downregulated in CRC and suggested that miR-212 can inhibit CRC viability and invasion by directly targeting PIK3R3 and regulating the AKT/mTOR signalling pathway.

The dysregulation of miR-212 expression has occurred in several human cancers. For example, in gastric cancer, miR-212 is downregulated in tumor tissues and associated with UICC staging, lymph node invasion, live metastasis and peritoneal dissemination of gastric cancer patients. Kaplan-Meier analysis showed that patients with low miR-212 expression have significantly poor prognosis compared with patients with high miR-212 expression (29). In CRC, previous study found that expression level of miR-212 is lower in tumor tissues and significantly associated with a more aggressive tumor phenotype and short disease-free survival times (30). In breast cancer, miR-212 is lowly expressed in tumor tissues. Low miR-212 expression is correlated with the tumor grade of breast cancer (31). Downregulation of miR-212 is also observed in cervical cancer (18), intrahepatic cholangiocarcinoma (19), hepatocellular carcinoma (20), ovarian cancer (32), glioblastoma (33) and osteosarcoma (34). However, miR-212 is aberrantly highly expressed in pancreatic ductal adenocarcinoma. High expression levels of miR-212 are obviously correlated with the tumor size and stage of pancreatic ductal adenocarcinoma. Moreover, univariate analysis demonstrated that patients with high miR-212 expression exhibit poorer overall survival than patients with low miR-212 expression (35). Furthermore, miR-212 is upregulated in acute myeloid leukaemia and significantly correlated with a prolonged overall survival, event-free and relapse-free survival (36). These conflicting studies indicate that the expression levels of miR-212 in human cancers show tissue specificity and suggest that miR-212 could serve as a useful prognosis marker in human cancers.

MiR-212 is reportedly involved in the origination and progression of certain varieties of cancer. For instance, miR-212 upregulation inhibits the cell proliferation, invasion and epithelial-to-mesenchymal transition and decreases the G1/S phase transition of the cell cycle in cervical cancer (18,37). Meng et al (30) found that resumption expression of miR-212 attenuates CRC cell migration and invasion in vitro and formation of intrahepatic and pulmonary metastasis in vivo. Hanieh (38) demonstrated that miR-212 overexpression suppresses the migration and invasion of breast cancer cells. Dou et al (20) reported that increased miR-212 expression reduces cell viability and proliferation and induces apoptosis in hepatocellular carcinoma. Wei et al (32) showed that miR-212 serves tumor-suppressing roles in the growth and metastasis of ovarian cancer cells. Li et al (29) found that the ectopic expression of miR-212 attenuates the proliferation, invasion and metastasis of gastric cancer cells (39). Luo et al (34) revealed that the resumption expression of miR-212 represses the proliferation, invasion in vitro and growth in vivo of osteosarcoma cells. These findings indicate that miR-212 acts as a tumor suppressor in these human cancers. However, miR-212 plays oncogenic roles in pancreatic ductal adenocarcinoma by promoting cell growth and motility (40). These conflicting findings suggest that the roles of miR-212 in tumor initiation and development are tissue specific. This phenomenon could be explained by the ‘imperfect complementarity’ of the interactions between miRNAs and their target genes (41).

Multiple targets of miR-212 have been validated, including SMAD2 (37) and TCF7L2 (18) in cervical cancer, FOXA1 (19,20) in intrahepatic cholangiocarcinoma and hepatocellular carcinoma, SOX4 (38) in breast cancer, RFXAP (42) in pancreatic cancer, SKOV3 (32) in ovarian cancer, PTCH1 (40) in pancreatic ductal adenocarcinoma, SGK3 (33) in glioblastoma and SOX4 (34) in osteosarcoma. In the present study, PIK3R3 was validated as a novel target of miR-212 in CRC. PIK3R3, which is a member of the phosphatidylinositol 3-kinase (PI3K) family, is upregulated in ovarian cancer (43), gastric cancer (44), lung cancer (45) and breast cancer (46). Accumulating evidence suggested that PIK3R3 plays key regulatory roles in various cellular processes, including cell proliferation, cell differentiation, angiogenesis and metastasis (46–48). In CRC, the expression levels of PIK3R3 were evaluated in clinical specimens and cell lines. In addition, low PIK3R3 expression correlates with CRC metastasis. Moreover, PIK3R3 upregulation promotes CRC cell metastasis both in vitro and in vivo (22). These findings indicate that targeting PIK3R3 in CRC may provide a novel strategy for the treatment of patients with this disease.
In conclusion, miR-212 acts as a tumor suppressor in CRC cell viability and invasion by directly targeting PIK3R3 and regulating the AKT/mTOR signalling pathway. These findings may provide new insights into the mechanisms underling CRC formation and progression, as well as promising therapeutic strategies for CRC. In our following experiments, we will focus on the PIK3R3 expression in CRC using immunohistochemical and the effects of miR-212 on CRC in vivo.

References

