SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model

CONG QIAN*, JIANXIANG JIN*, JINGYIN CHEN, JIANRU LI, XIAOBO YU, HANGBO MO and GAO CHEN

Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China

Received October 1, 2016; Accepted June 22, 2017

DOI: 10.3892/mmr.2017.7773

Abstract. Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post-SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO-1), occludin, claudin-5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl-associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting-domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co-treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO-1, occludin and claudin-5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post-SAH through p53 deacetylation, and the analysis of p53 related downstream pro-apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further.

Introduction

Subarachnoid hemorrhage (SAH) is a lethal disorder in which 30% of patients succumb within the first few days (1), and 10% succumb in the following days from various complications (2,3); the overall mortality rate is >50% (4). SAH accounts for 5-7% of all strokes and affects 10 out of 10,000 adults each year (2,5). Early brain injury (EBI) was considered to be the cause of high mortality and morbidity and a key target of SAH treatment (6,7). An increasing number of studies have demonstrated that apoptosis and brain edema are main factors in the pathogenesis of EBI following SAH (8-10). Therefore, it is hypothesized that anti-apoptotic therapy and brain edema reduction are important aspects for SAH treatment.

Following SAH, several molecules and/or pathways are activated, including the phosphatidylinositol-3-kinase/akt signaling pathway (11), the mitogen-activated protein kinase signaling pathway (12) and p53 (13), which may lead to blood-brain barrier (BBB) dysfunction and neuronal apoptosis. The BBB is closely restricted by tight junction proteins, including zona occludens (ZO), occludins and claudins (14,15). A previous study reported that, following SAH, BBB permeability was increased due to disruption of tight junction proteins (16).

Sirtuin 1 (SIRT1) is an important deacetylase and has been demonstrated to regulate cell cycle arrest, apoptosis and tumor suppression through the regulation of p53 acetylation (17-19). p53 acetylation is closely related with the regulation of apoptosis (20), in which p53 upregulates the expression of proapoptotic molecules, such as Bcl2-associated X, apoptosis regulator (Bax), p53 upregulated modulator of apoptosis.
(Puma), Noxa, and BH3 interacting-domain death agonist (Bid) (21-24). Previous studies revealed that SIRT1 may protect the brain and heart in ischemic models (25-27).

SIRT1/p53 signal has been proved to be an important regulator on apoptosis of cancer cell. Recently SIRT1 obviously increased in an experimental SAH model (28), so SIRT1/p53 signal may play an underlying role on cell apoptosis after SAH. The present study used resveratrol, which is a specific activator of SIRT1, to enhance its effects on p53 deacetylation and anti-apoptosis. For comparison, sirtinol, a specific inhibitor of SIRT1 was used to block the effects of resveratrol. The SIRT1/p53 signaling pathway and its associations with brain edema and neuronal apoptosis was investigated in a rat perforated SAH model. In the future, SIRT1 activators such as resveratrol may become novel drugs to improve the injury caused by EBI after SAH.

Materials and methods

Ethical approval. All animal procedures performed in the present study were in accordance with the Ethical Standards of the Ethics Committee for Animal Experimentation of Zhejiang University (Hangzhou, China), where the studies were conducted.

Animals. A total of 140 male Sprague-Dawley rats (weight, 300-350 g) purchased from Jackson Laboratory (Bar Harbor, ME, USA) were housed in a temperature (24°C) and humidity (50%) controlled environment with a 12-h light/dark cycle and free access to food and water. The rats were sacrificed under deep anesthesia following the observation period.

Groups and drug administration. The present study used resveratrol (RES) pretreatment with or without Sirtinol (SIR) co-treatment to activate or inhibit SIRT1, respectively, and to observed their effects on p53 acetylation, neuronal apoptosis and neurological function. An experimental protocol flow-chart is presented in Fig. 1. Sprague-Dawley rats (n=140) were randomly allocated to six groups: i) Sham (n=23); ii) SAH (n=23); iii) Solutol (SOL; SAH + SOL) (n=24); iv) SAH + RES (n=24); v) SAH + RES + dimethylsulfoxide (DMSO) (n=23); and vi) SAH + RES + SIR (n=23).

RES (100 mg/kg; cat no. V900386), was dissolved in 30% SOL (both from Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) and administered intraperitoneally (i.p.) 48 h prior to SAH induction. The same volume of SOL (30%) was used (i.p.) as a vehicle control. SIR (3.94 µg; cat no. S7942) was dissolved in 10 µl DMSO (cat no. D5879) (both from Sigma-Aldrich; Merck KGaA) and injected into the left ventricle (bregma, -0.8 mm; lateral, 1.5 mm; depth, 3.5 mm) at the rate of 60 µl/h, 48 h prior to SAH induction; DMSO (10 µl) was administered into the left ventricle as a vehicle control. The dose of drugs used in our experiment was based on a previous experiment (29).

Induction of SAH. Prior to surgery the weight and temperature of rats were measured and recorded. The endovascular perforated SAH model was established as previously reported with minor modifications (30). Rats were anesthetized with 1% pentobarbital sodium (50 mg/kg i.p.; cat no. P3761; Sigma-Aldrich; Merck KGaA). The common carotid artery, internal carotid artery (ICA) and external carotid artery (ECA) were exposed; the ECA was ligated, and a 4-0 nylon suture was inserted into the ICA through the ECA. The suture was further inserted into the intracranial ICA until resistance was felt and was subsequently pushed a further 5 mm to perforate the ICA wall. The ECA was sutured again and ICA reperfusion was started. The Sham group received similar surgical procedures, except that the suture was removed once resistance was felt and the ICA was not punctured.

Neurological score. Neurological scores were assigned in a blinded fashion using a modification of a previously reported scoring system (31), which consisted of spontaneous activity (0-3), spontaneous movements of all limbs (0-3), forelimbs outstretching (0-3), climbing ability (1-3), proprioception (1-3) and response to vibrissae stimulation (1-3). The scores ranged from 3 to 18.

Severity of SAH. The grade of SAH was assigned blindly using a previously reported grading system (32). Brains were removed from rats that were under deep anesthesia with 1% pentobarbital sodium (100 mg/kg i.p.) and the images of basal cerebrum were taken for grading. The circle of Willis and basilar arteries were divided into six segments. Each segment was given a score from 0 to 3 depending on the amount of subarachnoid blood clot, and the scores for the grade of SAH were divided into 3 groups: Mild, 0-7; moderate, 8-12; and severe: 13-18. In order to eliminate the influences of the difference in the bleeding volume and injury, only data of whose with moderate SAH grade were collected for further analysis.

Brain water content. Brains were removed from rats that were under deep anesthesia 24 h following SAH induction and separated into left hemisphere, right hemisphere, cerebellum and brain stem. Each part was weighed immediately upon removal (wet weight) and following drying in a 105°C oven for 72 h. The formula [(wet weight - dry weight)/wet weight] x100% was used to calculate the brain water content (11).

Figure 1. Experimental protocol. DMSO, dimethylsulfoxide; IF, immunofluorescence; SAH, subarachnoid hemorrhage; SIRT1, sirtuin 1.
Evans blue extravasation. Each group has 6 rats that were used in this experiment. Evans blue extravasation was used to detect BBB integrity at 24 h post-SAH. Evans blue dye (2%; 5 ml/kg; Sigma-Aldrich; Merck KGaA) was injected via tail vein. Rats were deeply anesthetized following 60 min and perfused with PBS transcardially to remove intravascular Evans blue. Brains were removed from rats that were under deep anesthesia and divided into four parts as aforementioned. The weighed brain samples were homogenized in 3 ml PBS and centrifuged at 5,000 x g for 40 min. The supernatant was mixed with an equal volume of a solution containing trichloroacetic acid concentration of Evans blue in the supernatant was measured and ethanol (1:3). The mixtures were incubated overnight at 4˚C overnight with the following primary antibodies which was dissolved in 10% albumin (Sigma-Aldrich; Merck KGaA) 24 h at room temperature, for 2 h. The immune complexes were detected using a ChemiDoc XRS+ system (Bio-Rad Laboratories, Inc., Hercules, CA, USA) with immobilon (EMD Millipore, Billerica, MA, USA). The density of each protein band was normalized to β-actin and quantified using Image Lab Software version 4.0 (Bio-Rad Laboratories, Inc.).

Reverse transcription-quantitative polymerase chain reaction. Total RNA was extracted from cerebral cortex near to the optic chiasm at the skull base (50 mg) brain tissue using TRIzol reagent (cat. no. 15956-026; Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA), according to the manufacturer's details. Total RNA was reverse transcribed into single-stranded cDNA using the PrimeScript RT reagent kit (cat. no. P0012; Beyotime Institute of Biotechnology, Shanghai, China). The equivalent extracted proteins (40-60 µg) were separated by 7.5, 10 and 12.5% gel electrophoresis, transferred to polyvinylidene difluoride membranes and blocked in TBS with Tween-20 with 10% skimmed milk at room temperature for 2 h. Subsequently, membranes were incubated at 4˚C overnight with the following primary antibodies which was dissolved in 10% albumin (Sigma-Aldrich; Merck KGaA) TBS solution: Anti-SIRT1 (1:1,000; cat. no. 9475S), anti-p53 (1:1,000; cat. no.) (both from Cell Signaling Technology, Inc.), anti-acetylated (AC)-lysine (1:1,000; cat. no. 9441S), anti-ZO-1 (1:1,000; cat. no. 13663), anti-caspase3 (1:1,000; cat. no. 9662) and anti-β-actin (1:2,000; cat. no. 4970S) from Cell Signaling Technology, Inc.; and anti-occludin (1:1,000; cat. no. ab131259) from Abcam (Cambridge, UK). Incubation with the secondary antibody (1:5,000; cat. no. MAB201A, mouse anti-rabbit light chain antibody-alkaline phosphatase conjugated; Abcam) was at room temperature, for 2 h. The immune complexes were detected using a ChemiDoc XRS+ system (Bio-Rad Laboratories, Inc., Hercules, CA, USA) with immobilon (EMD Millipore, Billerica, MA, USA). The density of each protein band was normalized to β-actin and quantified using Image Lab Software version 4.0 (Bio-Rad Laboratories, Inc.).

Immunofluorescence (IF) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) staining. Rats were sacrificed under deep anesthesia, perfused transcardially with 4% paraformaldehyde in PBS, and the brains were fixed in 4% paraformaldehyde at 4˚C more than 48 h and dehydrated in 30% glucose fluid. The brains were fixed in 4% paraformaldehyde at 4˚C and ethanol (1:3). Brain sections were cut using a CM1850 cryomicrotome (CM1850; Leica Microsystems GmbH, Wetzlar, Germany). The sections were permeabilized and blocked in 10% goat serum (cat. no. 5425; Cell Signaling Technology, Inc., Danvers, MA, USA) and 0.3% Triton X-100 for 60 min at room temperature. Brain slides were incubated with the primary mouse anti-neuronal nuclei (NeuN) antibody (1:400; cat. no. MAB377; EMD Millipore; Merck KGaA). A goat anti-mouse secondary antibody conjugated to Alexa Fluor 555 (1:800; cat. no. 4409; Cell Signaling Technology, Inc.). TUNEL staining was used to detect apoptosis with the In Situ Cell Death Detection kit (cat. no. 12156792910; Roche Diagnostics GmbH, Mannheim, Germany), following the manufacturer's protocol, the slides were incubated with TUNEL reagent at 37˚C for 2 h in the dark. Slides were counterstained with DAPI (100 ng/ml, cat. no. D9542) at room temperature for 20 sec mounted with a fluorescent mounting medium (cat. no. M1289) (both from Sigma-Aldrich; Merck KGaA) and sealed with nail polish. Five fields in each groups were observed with a Leica fluorescence microscope (Leica Microsystems Inc., Buffalo Grove, IL, USA).
Statistical analysis. Data were analyzed using Statistical Package for Social Science (SPSS) 20.0 (IBM Corp., Armonk, NY, USA). The mortality rate was tested using the χ² test. The values of the neurological score were presented as the mean ± standard deviation and were tested by non-parametric test. The values of protein bands were normalized to the mean value of sham group and were tested by one-way analysis of variance followed by least significant difference test. P<0.05 was considered to indicate a statistically significant difference.

Results

Mortality and neurological defect score. No significant differences were identified of body weight and body temperature among each group. No mortality was observed in the Sham group; however, the mortality rates in other groups were: 27.3% in the SAH group; 30% in the SOL group; 14.3% in the RES group; 19.0% in RES + DMSO; and 23.8% in RES + SIR where no significant difference was found (Fig. 2A). Neurological defect scores demonstrated that RES pretreatment improved neurological function 24 h following SAH induction and SIR treatment reversed the protective effects of RES (Fig. 2B).

Brainwater content and Evans blue extravasation. Brain water content of the bilateral cerebrum and cerebellum increased significantly 24 h post-SAHI induction (vs. sham), but that did not happen at brain stem; RES pretreatment significantly weakened the SAH-associated increase of brain water content at the bilateral cerebrum and cerebellum rather than brain stem (vs. SOL), and to a large extent SIR treatment impeded the effects of RES (vs. DMSO). SAH induction had a clear effect on BBB integrity of whole brain at 24 h post-SAH, with a >10-fold increase of extravascular Evans blue (vs. sham); RES appeared to have a protective effect on the BBB of whole brain. Extravascular Evans blue was reduced by half (vs. SOL); Sirtinol partly reversed the protective effects of RES (vs. DMSO; Fig. 2C and D).

Post-SAH expression of tight junction proteins ZO-1, Occludin and Claudin-5. Following SAH induction, the expression levels of all tight junction proteins examined, including ZO-1, Occludin and Claudin5, were significantly reduced at 24 h following SAH induction and SIR treatment reversed the protective effects of RES (Fig. 3).

Expression of SIRT1 and p53 at 24 h post-SAHI. SIRT1 protein expression was significantly decreased at 24 h following SAHI induction (Fig. 4A). In RES-treated rats, SIRT1 protein expression was increased compared with rats in the SAH + SOL group, and this effect was partly reversed by SIR co-treatment (Fig. 4A). Following SAH
induction, the expression levels of p53 and AC-p53 were significantly increased compared with expression levels in the Sham group (Fig. 4B and C, respectively). RES pretreatment inhibited the increased protein expression of p53 and AC-p53 post-SAH, and this effect was blocked by SIR co-treatment (Fig. 4B and C).

mRNA expression of proapoptotic molecules and activated caspase3 protein post-SAH. Bax, Puma, Noxa and Bid mRNA expression levels were detected by RT-qPCR. Following SAH induction, the mRNA expression levels of these proapoptotic molecules was increased at 24 h (Fig. 5A); Bax mRNA expression exhibited the greatest increase relative to Sham. RES pretreatment significantly lowered Bax expression compared with expression in the SAH + SOL group; however, no significant differences were indicated for mRNA expression in the other treatment groups. SIR co-treatment reversed the RES related decrease of Bax mRNA expression (Fig. 5A). Cleaved caspase3 protein expression was significantly increased at 24 h post-SAH (Fig. 5B); the level of cleaved caspase3 expression was significantly reduced in rats pretreated with REV, and this protective effect of REV was reversed by SIR co-treatment.

Localization of apoptotic neurons by immunofluorescence staining. Following SAH induction, the number of NeuN and TUNEL double-positive cells (22.4/100 cells) increased notably compared with the Sham group (2.4/100 cells) 24 h post-SAH induction (Fig. 6); RES pretreatment exhibited protective effects and reduced the number of double-positive cells (12.4/100 cells) compared with SAH + SOL (22.1/100 cells). SIR co-treatment partly reversed the protective effects of RES, and increased the number of apoptotic neuronal cells (20.6/100 cells).

Discussion
Post-SAH EBI attributes to patient disability and mortality, and the treatment of EBI is a main topic of SAH management (1,34). EBI following SAH includes many aspects, including global ischemia, neuroinflammation, apoptosis and brain edema. A number of previous studies on SAH treatment related with RES have focused on the anti-inflammation effects of RES (35,36). The present study revealed the following observations: i) Pretreatment with RES improved brain edema secondary to BBB disruption by protecting the expression of tight junction proteins against reduction in EBI post-SAH; ii) administration of REV decreased the expression levels of AC-p53 and total p53, which are related with apoptosis and BBB disruption post-SAH (28); iii) the protective effects of RES pretreatment in EBI at 24 h following SAH was reversed by co-treatment with the SIRT1 inhibitor SIR.
Brain edema is a critical, independent risk factor for high morbidity and mortality following SAH, and a major cause of edema is dysfunction of the BBB (37). Excessive extracellular water resulting from the disruption of the BBB is a main cause of vasogenic edema (38), and novel therapeutic agents against BBB disruption may improve the prognosis of patients with SAH (39). Tight junction proteins are the main components of BBB structure (40), and the tight junction proteins Claudin-5 and Occludin are the main components of BBB integrity, and ZO-1 serves a primary role in regulating tight junction (41,42). The present study demonstrated that the administration of RES following SAH induction reduced brain edema and lowered BBB permeability at 24 h post-SAH, and these effects may occur through the increased expression of ZO-1, Occludin and Claudin-5. Further investigation revealed that the therapeutic effects of RES on brain edema and BBB disruption were blocked by SIR co-treatment.

SIRT1 was decreased in the cortex at 24 h after SAH (43), which implied that SIRT1 may be associated with the disruption of the BBB following SAH. A previous study demonstrated that the suppression of SIRT1 expression by SIR treatment resulted in aggravated BBB disruption through the increased activity of matrix metalloproteinases (MMPs) (28). Occludin and Claudin-5 are the main components of tight junctions and have been previously reported to be closely related with BBB function (44-46). One study reported direct evidence that MMPs increased BBB permeability by regulating tight junction proteins (47). Another study revealed that RES treatment attenuated BBB disruption by regulation of the MMP9/tissue inhibitor of MMPs 1 (TIMP1) balance in a cerebral ischemic model (48). The mechanism involved in RES regulation of tight junction proteins in SAH remain unknown. The present study demonstrated that RES treatment increased SIRT1 tight junction protein expression levels in EBI post-SAH, which may be associated with BBB integrity, brain edema and neurological function.

Figure 4. SIRT1 p53 and AC-p53 protein expression levels were detected by western blot in the different treatment groups. (A) SIRT1 protein expression decreased 24 h following SAH induction; RES pretreatment significantly increased SIRT1 expression, and SIR co‑treatment partly suppressed the effect of RES. (B) p53 and (C) AC-p53 protein expression levels were both reduced by RES pretreatment, and these effects were partly blocked by co‑treatment with SIR. AC, acetylated; DMSO, dimethylsulfoxide; RES, resveratrol; SAH, subarachnoid hemorrhage; SIR, Sirtinol; SIRT1, sirtuin 1; SOL, Solutol. *P<0.05 SAH vs. Sham, RES vs. SOL and SIR vs. DMSO respectively.
induction, which was in line with the increase of p53 expression. RES treatment was associated with an increase of SIRT1 expression and a decreased of p53 expression 24 h post-SAH. SIRT1 was revealed to be a nicotinamide-adenine dinucleotide-dependent p53 deacetylase (50), and acetylation of p53 may inhibit its ubiquitination by MDM2 (51); it is implied that SIRT1 may enhance p53 proteolysis by p53 deacetylation. AC-p53 has been reported to undergo a conformational change in its DNA-binding domain to induce apoptosis more easily by activating Bax and Puma transcription (18). The present study demonstrated that the transcription of Bax and Puma were significantly increased post-SAH along with p53 acetylation, and treatment with RES may decreased neuronal apoptosis through SIRT1/p53 signaling pathway (Fig. 7).

The present study investigated the mechanisms of the protective effects of RES treatment in an endovascular perforation SAH model and offered an alternative explanation for these protective effects. However, there are several limitations to our study. The other potential causes of brain edema were not investigated in this study, RES may have other potential neuroprotective effects and the mechanisms also require further investigation.

![Figure 5](image5.png)

Figure 5. Bax, Puma, Noxa and Bid mRNA expression levels were detected by RT-qPCR, and cleaved caspase3 protein expression was detected by western blotting. (A) RT-qPCR results demonstrated that Bax, Puma, Noxa and Bid mRNA expression levels were all increased following SAH induction; however, only Bax expression appeared to be affected by RES and SIR treatments. (B) Cleaved caspase3 protein expression decreased significantly in the RES treatment group post-SAH, and significantly increased in the SIR co-treatment group. Bax, Bcl2-associated X, apoptosis regulator; Bid, BH3 interacting-domain death agonist; DMSO, dimethylsulfoxide; Puma, p53 upregulated modulator of apoptosis; RES, resveratrol; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; SAH, subarachnoid hemorrhage; SIR, Sirtinol; SOL, Solutol. *P<0.05 SAH vs. Sham, &P<0.05 RES vs. SOL and &P<0.05 SIR vs. DMSO.

![Figure 6](image6.png)

Figure 6. Immunofluorescence staining with TUNEL and NeuN in the rats' cerebral cortex, the numbers of both MAP2- and TUNEL-positive cells increased after SAH (SAH vs. Sham); RES significantly reduced the number of double-positive cells (SAH+RES vs. SAH+SOL), whereas Sirtinol pretreatment increased the number of double-positive cells (RES+SIR vs. RES+DMSO). DMSO, dimethylsulfoxide; RES, resveratrol; SAH, subarachnoid hemorrhage; SIR, Sirtinol; SOL, Solutol. *P<0.05 SAH vs. Sham, &P<0.05 RES vs. SOL and *P<0.05 SIR vs. DMSO.

![Figure 7](image7.png)

Figure 7. Illustration of the role of SIRT1 in EBI following SAH. BBB, blood-brain barrier; EBI, early brain injury; SAH, subarachnoid hemorrhage; SIRT1, sirtuin 1.
In conclusion, results from the present study may aid in the understanding of the mechanisms for the neuroprotective effects of RES in EBI following SAH. The data suggested that RES treatment may prevent degradation of tight junction proteins and may attenuate brain edema secondary to BBB disruption through the SIRT1/p53 signal pathway. RES may be a novel treatment in EBI following SAH.

Acknowledgements

The authors are grateful for funding from The Science and Technology Department of Zhejiang Province, China (grant no. 2013C33138).

References

