The cloning and activity of human Hes1 gene promoter

HAI LU1,2, JINQUN JIANG3 and YI GAO1,4

1Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282; 2Department of Breast Surgery; 3Clinical Laboratory, Yuebei People’s Hospital, Shaoguan, Guangdong 512026; 4State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China

Received June 20, 2017; Accepted September 15, 2017

DOI: 10.3892/mmr.2017.8240

Abstract. The aim of the current study was to obtain and analyze the activity of the human Hes1 gene promoter. The genomic DNA of human HeLa cell was used as template, polymerase chain reaction (PCR) was used to amplify the 5’ end sequence of Hes1 gene and then the amplified segment was connected to pMD18-T vector. Subsequently, double enzyme digestion was used for identification and the sequence was detected; the promoter with the correct sequence was inserted into pGL3-Basic, and the sequence was identified by double enzyme digestion. The recombinant DNA with correct sequence was transiently transfected into cervical cancer cells, and the dual luciferase reporter gene assay system was used to detect the activity of the promoter. The results demonstrated that the human Hes1 gene promoter amplified by PCR was the same as that of the sequence in the gene bank, and the dual luciferase reporter gene assay system demonstrated that there was promoter activity in cervical cancer cells. In conclusion, the Hes1 luciferase reporter recombinant vector was successfully established and transfected into HeLa cells to verify that it has promoter activity, and the core area of the promoter has several tumor-promoting and tumor suppressor genes. This provides a basis for understanding the regulatory mechanism of Hes1 transcription and translation.

Introduction

During the development of normal cells, the proliferation and differentiation remain a dynamic balance, which is important to the normal physical function of the body (1,2). Among the pathways that regulate the balance of proliferation and differentiation, Notch-Hes is one of the key pathways (3-5). Previous studies have identified that Hes1 protein is extensively expressed in various cell types in adult mice (6-8). The Hes1 gene is an important member of the basic Helix-Loop-Helix gene family, which is abundantly expressed during embryonic development (9-11). It is located at 3q28-q29 on human chromosome 3, the mRNA contains 1,471 base pairs and 4 exons. The Hes1 protein is encoded by the Hes1 gene and contains 280 amino acids and the relative molecular weight is 29,400 (12,13). As an important downstream effector molecule of the Notch signaling pathway, Hes1 serves an important role in the proliferation and particularly the differentiation of the mammalian cells (14,15). Previously, in the research of cervical caner, it has been identified that Hes1 protein is particularly expressed in the nucleus and cytoplasm of the cervical epithelial cells (16,17). The Hes1 expression levels in the epithelial cells of cervical intraepithelial neoplasia and cervical cancer are significantly increased compared with normal cervical epithelial cells. As the severity of cervical epithelial neoplasia increases, the Hes1 expression is increased (18-20). It was hypothesized that Hes1 protein overexpression may be involved in the carcinogenesis of the cervical epithelium. In the present study, the Hes1 promoter was cloned and the activity was analyzed in order to provide a basis for the research on transcription and regulation of Hes1 during the occurrence and development of cervical cancer.

Materials and methods

Materials. The human cervical cancer HeLa cell line (Institute for Regenerative Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, China), GenBank (National Center for Biotechnology Information, Bethesda, MD USA), Dulbeco’s modified Eagle’s medium (DMEM; GE Healthcare Life Sciences, Logan, UT, USA), fetal bovine serum (Thermo Fisher Scientific, Inc., Waltham, MA, USA), Ex Taq, T4 DNA ligase, pMD18-T vector, restriction enzymes SacI and HindIII (all from Takara Bio, Inc., Otsu, Japan), primer synthesis (Sangon Biotech Co., Ltd., Shanghai, China), pGL3-Basic vector, PGL3-control vector, PRL-TK vector, dual-luciferase reporter assay kit (all from Promega Corporation, Madison, WI, USA), Escherichia coli DH5α (Institute for Regenerative Biotechnology, University of Wisconsin, Madison, WI, USA).
Table I. Hes1 promoter sequences and their associated transcription factors.

<table>
<thead>
<tr>
<th>Start point</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>-889</td>
<td>gggatccagaactacattgccgaaacactctatttagctaggaagcgccattttt</td>
</tr>
<tr>
<td>-829</td>
<td>cttttttctgattggaaacagctgcttgccatagctactaatcttcctttcttgatgcttagatggctagcgttt</td>
</tr>
<tr>
<td>-769</td>
<td>cccctcttaactacgtgtgcttggccagtgctagctctcttttcctttctttctttcttcttttttctttttttttt</td>
</tr>
</tbody>
</table>
| -709 | caccgcccctctcccccctcccccccctcccctccc
polymerase chain reaction (PCR) was used to amplify the Hes1 promoter segment. The Hes1 promoter sequences are listed in Table I.

The amplification conditions were pre-denaturation at 95°C for 5 min, denaturation at 95°C for 30 sec, annealing at 56.2°C for 30 sec, elongation at 72°C for 45 sec, there were 35 cycles in total, followed by elongation at 72°C for 10 min. Following PCR, 5 µl product was added in 1.5% agarose gel for electrophoresis. Subsequently, the gel extraction kit was used for the purification of the PCR product. The procedures were conducted according to the manufacturer's protocol [DNA amplification and extraction kit (cat. no. ER103; Tiangen Biotech Co., Ltd.)].

The connection and identification of purified target segment and cloning vector. The collected PCR product (Hes1 gene) was transfected by Lipofectamine™ 2000 into the pMD18-T vector, which was transformed and amplified to extract the plasmids. Subsequently, restriction enzymes for SacI and HindIII dual-enzyme digestion were used and the sequences were detected, which was termed the pMD18-T-Hes1-promoter.

The establishment and identification of recombinant expression vectors. The recombinant T vector with the correct sequence and pGL3-Basic plasmid received SacI and HindIII dual-enzyme digestion and separated by agarose electrophoresis, the gel extraction kit was used to collect the target segment, and then T4 DNA ligase was used to transform, amplify and extract the plasmids. The product received dual-enzyme digestion and sequence detection, which was termed the pGL3-Hes1-promoter.

Transfection of recombinant expression vector into the cells and activity detection. The HeLa cells were inoculated in 24-well plate at 4 h before transfection, 0.5 ml complete medium and 0.5x10⁵ cells were added in each well and the transfection was conducted when the cells reached 70-80% confluency. The procedures were done according to the manufacturer's instructions for Lipofectamine 2000. The transfected plasmids included negative control plasmid pGL3-Basic, positive control
plasmid pGL3-Control containing the SV40 enhancer/promoter, recombinant plasmid pGL3-Hes1-promoter and internal control PRL-TK plasmid. A total of 48 h after transfection, the Dual-luciferase reporter assay kit from Promega was used to detect the activity of the transfected plasmid, and there were 3 repeated wells for every group and the experiments were repeated 3 times.

Statistical analysis. The data were analyzed by SPSS software, version 18.0 (SPSS, Inc., Chicago, IL, USA). One-way analysis of variance and the Q test were used to analyze the data. The data were presented as mean ± standard deviation. P<0.05 was considered to indicate a statistically significant difference.

Results

Target segment after PCR product electrophoresis. The genomic DNA of HeLa cell was used as a template and the promoter segment of the Hes1 gene was amplified by PCR, and the electrophoresis results indicated that there was a specific band at 813 base pairs (bp), as presented in Fig. 1A.

Enzyme cutting identification of recombinant T cloning vector. The PCR production of the Hes1 promoter was purified and connected to the pMD18-T vector to establish the recombinant vector pMD18-T-Hes1-promoter. Subsequently to transformation the plasmids were extracted for SacI and HindIII dual enzyme digestion. The electrophoresis results demonstrated that there were two specific bands at 813 and 2,700 bp, as presented in Fig. 1B.

Sequence detection of recombinant T cloning vector. DNA sequence analysis demonstrated that compared with the Hes1 gene promoter sequence from GenBank, the 5' and 3' end of the target segment sequence of cloned expression vector pGL3-Hes1-promoter located at upstream -747 bp and downstream +66 bp of ATG, the size was 813 bp, as presented in Fig. 2.

Electrophoresis results of recombinant expression vector pGL3-Hes1-promoter after dual enzyme digestion. The electrophoresis of recombinant expression vector pGL3-Hes1-promoter after SacI and HindIII dual-enzyme digestion demonstrated that there were specific bands at 813 and 4,300 bp, as presented in Fig. 3.

Sequencing results of recombinant expression vector. DNA sequencing results demonstrated that compared with the Hes1 promoter sequence from GenBank, the 5' and 3' end of the target segment sequence of cloned expression vector pGL3-Hes1-promoter located at upstream -747 bp and downstream +66 bp of ATG, the size was 813 bp, as presented in Fig. 4.

Activity analysis of recombinant expression vector following HeLa cell transfection. At 48 h after HeLa cell transfection by recombinant expression plasmid pGL3-Hes1-promoter, pGL3-Basic and pGL3-Control, the luciferase expression was detected. The ratio of first and second fluorescence was defined as the relative luciferase activity. The relative luciferase of pGL3-Basic was 1.076, of pGL3-Control was 100.47 and of pGL3-Hes1-promoter was 34.44, there was significant difference (P<0.05; Table II).

Discussion

During the normal development of cells, the proliferation and differentiation remains in dynamic balance, which is important for normal physical function (21-23). The pathways to regulate the balance between cell proliferation and differentiation include the leukemia inhibitory factor-bone morphogenetic protein pathway, octamer-binding transcription factor 3/4 pathway, Wnt pathway and Notch-Hes pathway (24,25). These pathways are composed of various cytokines and transcription factors and among these pathways, the Notch-Hes signaling transduction pathway is the most important pathway. If there is abnormality of Notch signaling pathway, the cells cannot differentiate normally, thus there is possibility of oncogenesis, and it has been reported that the Notch receptor is abnormally expressed in numerous human solid tumor types including cervical, head and neck, endometrial, kidney, lung and breast cancer, pleural mesothelioma and salivary gland tumors) and hematological malignancies (26-28).

Cervical cancer is the second most common type of female malignant cancer, following breast cancer in developing countries and the most common type of genital cancer in Asia (29). The morbidity of cervical cancer is increasing and the mortality is the second highest cause of cancer-associated mortality in women in Asia (29-31). In the early stages of cervical cancer, there is usually no symptoms and the physical signs are not obvious, however early diagnosis and early
treatment are the key methods to increase the survival rate. Previous studies have demonstrated that the low degree of cell differentiation is associated with poor prognosis (32-34). As an important downstream target gene of Notch signaling pathway, Hes1 genes can directly combine with specific DNAs to block the pathway activation and inhibit cell differentiation (35,36). Thus, exploring the regulatory mechanism of its transcription is significant in the prevention and treatment of cervical cancer.

The regulation of gene expression in eukaryotic cells include transcriptional-level regulation and post-transcriptional regulation according to the sequencing, and transcriptional-level regulation is the predominant method (37). Transcriptional-level regulation is the most important step in the regulation of gene expression in eukaryote, which mainly depends on the effects of certain regulatory sequences (including the promoter and enhancer) and certain protein factors (such as transcription factors) on the initiation of transcription. The key regulation of gene expression is on a transcriptional level, and the promoter is the most important domain in transcriptional regulation. Thus, the study on Hes1 is important. The luciferase reporter gene vector doesn't contain the promoter and enhancer, which can clone the target gene into the expression plasmid vector containing the reporter gene. The expression of luciferase is associated with the promoter sequence in the recombinant plasmid. Subsequent to transfection, the expression of luciferase activity can directly reflect the activity of the promoter. At present, this method is widely applied (12,13). The novelty of the current study is that the promoter sequence was newly designed. In the current study, the Hes1 luciferase reporter recombinant vector was successfully established and transfected into HeLa cells to verify that it had promoter activity, and the core area of the promoter had several tumor-promoting and tumor suppressor genes. This provides a basis for the further study of the regulatory mechanism of Hes1 transcription and translation. In addition, it can provide novel strategy, target and experimental evidence for the prevention and treatment of cervical cancer.

References