LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation

  • Authors:
    • Xuefang Liu
    • Sugai Yin
    • Yulong Chen
    • Yaosong Wu
    • Wanchun Zheng
    • Haoran Dong
    • Yan Bai
    • Yanqin Qin
    • Jiansheng Li
    • Suxiang Feng
    • Peng Zhao
  • View Affiliations

  • Published online on: February 2, 2018     https://doi.org/10.3892/mmr.2018.8542
  • Pages: 5484-5491
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic interface between the outside environment and the host response to bacterial infection via cytokine secretion. In the present study, the mechanisms of LPS induced‑inflammatory response in human lung cells and macrophages were investigated. The effects of LPS exposure on cytokine production, inflammation‑related transcription factors and intracellular signaling pathway activation were assessed in human lung mucoepidermoid carcinoma H292 cells and human macrophage THP‑1 cells. The results demonstrated that LPS markedly increased the expression of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, matrix metallopeptidase (MMP)‑9 and tissue inhibitor of metalloproteinases‑1 in H292 cells, while it increased the production of IL‑6, IL‑8 and TNF‑α in differentiated THP‑1 cells. In addition, LPS exposure activated nuclear factor (NF)‑κB and activator protein (AP)‑1 signaling in H292 cells, while it activated NF‑κB and signal transducer and activator of transcription (STAT) 3 signaling in THP‑1 cells. Furthermore, treatment with NF‑κB, AP‑1 or STAT3 inhibitors significantly decreased the LPS‑mediated expression of IL‑8 and TNF‑α in these cells, suggesting that these pathways might serve crucial roles in LPS‑induced cytokine expression. In conclusion, LPS stimulation of H292 and THP‑1 cells induced cytokine expression and NF‑κB, mitogen‑activated protein kinase and Janus kinase/STAT3 pathway activation with subsequent nuclear translocation of NF‑κB, AP‑1 and STAT3, which demonstrated potential of the use of NF‑κB, AP‑1 and STAT3 in therapies for conditions and diseases associated with chronic inflammation.

References

1 

Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, Romieu I, Silverman EK and Balmes JR; Committee on Nonsmoking COPD, Environmental and Occupational Health Assembly, : An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 182:693–718. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Dohrman A, Miyata S, Gallup M, Li JD, Chapelin C, Coste A, Escudier E, Nadel J and Basbaum C: Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim Biophys Acta. 1406:251–259. 1998. View Article : Google Scholar : PubMed/NCBI

3 

Hasday JD, Bascom R, Costa JJ, Fitzgerald T and Dubin W: Bacterial endotoxin is an active component of cigarette smoke. Chest. 115:829–835. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Li L, Wang Y, Gao W, Yuan C, Zhang S, Zhou H, Huang M and Yao X: Klotho reduction in alveolar macrophages contributes to cigarette smoke Extract-induced inflammation in chronic obstructive pulmonary disease. J Biol Chem. 290:27890–27900. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Tseng CT, Perrone LA, Zhu H, Makino S and Peters CJ: Severe acute respiratory syndrome and the innate immune responses: Modulation of effector cell function without productive infection. J Immunol. 174:7977–7985. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S and Iavicoli S: Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol. 34:1209–1219. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Speth JM, Bourdonnay E, Penke LR, Mancuso P, Moore BB, Weinberg JB and Peters-Golden M: Alveolar epithelial cell-derived prostaglandin E2 serves as a request signal for macrophage secretion of suppressor of cytokine signaling 3 during Innate Inflammation. J Immunol. 196:5112–5120. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Li YJ, Yu CH, Li JB and Wu XY: Andrographolide antagonizes cigarette smoke extract-induced inflammatory response and oxidative stress in human alveolar epithelial A549 cells through induction of microRNA-218. Exp Lung Res. 39:463–471. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Zeng KW, Wang S, Dong X, Jiang Y, Jin HW and Tu PF: Sesquiterpene dimmer (DSF-27) inhibits the release of neuroinflammatory mediators from microglia by targeting spleen tyrosine kinase (Syk) and Janus kinase 2 (Jak2): Two major non-receptor tyrosine signaling proteins involved in inflammatory events. Toxicol Appl Pharmacol. 275:244–256. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Singh D, Siew L, Christensen J, Plumb J, Clarke GW, Greenaway S, Perros-Huguet C, Clarke N, Kilty I and Tan L: Oral and inhaled p38 MAPK inhibitors: Effects on inhaled LPS challenge in healthy subjects. Eur J Clin Pharmacol. 71:1175–1184. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Xu F, Xu Y, Zhu L, Rao P, Wen J, Sang Y, Shang F and Liu Y: Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway. Mol Vis. 22:836–846. 2016.PubMed/NCBI

12 

Lund ME, To J, O'Brien BA and Donnelly S: The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods. 430:64–70. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Vroling AB, Jonker MJ, Breit TM, Fokkens WJ and van Drunen CM: Comparison of expression profiles induced by dust mite in airway epithelia reveals a common pathway. Allergy. 63:461–467. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Yamamoto Y and Gaynor RB: Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med. 1:287–296. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Hart LA, Krishnan VL, Adcock IM, Barnes PJ and Chung KF: Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am J Respir Crit Care Med. 158:1585–1592. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Lam D, Ng N, Lee S, Batzer G and Horner AA: Airway house dust extract exposures modify allergen-induced airway hypersensitivity responses by TLR4-dependent and independent pathways. J Immunol. 181:2925–2932. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Li X, Chen Q, Chu C, You H, Jin M, Zhao X, Zhu X, Zhou W and Ji W: Ovalbumin-induced experimental allergic asthma is Toll-like receptor 2 dependent. Allergy Asthma Proc. 35:pp. e15–e20. 2014; View Article : Google Scholar : PubMed/NCBI

18 

Yew-Booth L, Birrell MA, Lau MS, Baker K, Jones V, Kilty I and Belvisi MG: JAK-STAT pathway activation in COPD. Eur Respir J. 46:843–845. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Luff SA and Papoutsakis ET: Megakaryocytic maturation in response to shear flow is mediated by the activator protein 1 (AP-1) transcription factor via Mitogen-activated protein kinase (MAPK) mechanotransduction. J Biol Chem. 291:7831–7843. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Kagan JC and Medzhitov R: Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell. 125:943–955. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 17 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, X., Yin, S., Chen, Y., Wu, Y., Zheng, W., Dong, H. ... Zhao, P. (2018). LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation. Molecular Medicine Reports, 17, 5484-5491. https://doi.org/10.3892/mmr.2018.8542
MLA
Liu, X., Yin, S., Chen, Y., Wu, Y., Zheng, W., Dong, H., Bai, Y., Qin, Y., Li, J., Feng, S., Zhao, P."LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation". Molecular Medicine Reports 17.4 (2018): 5484-5491.
Chicago
Liu, X., Yin, S., Chen, Y., Wu, Y., Zheng, W., Dong, H., Bai, Y., Qin, Y., Li, J., Feng, S., Zhao, P."LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation". Molecular Medicine Reports 17, no. 4 (2018): 5484-5491. https://doi.org/10.3892/mmr.2018.8542