MicroRNA-485 targets MACC1 and inhibits cervical cancer cell proliferation and invasion

SHUMEI WANG¹*, YAQI ZHANG¹*, SHUNPING YUAN¹ and XIAOLING JI²

¹Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500; ²Department of Obstetrics and Gynecology, Weifang People’s Hospital, Weifang, Shandong 261041, P.R. China

Received December 6, 2017; Accepted May 4, 2018

DOI: 10.3892/mmr.2018.9186

Abstract. A large body of evidence has indicated that microRNAs (miRNAs/miRs) have essential roles in the development and progression of cervical cancer. Thus, miRNAs with dysregulated expression are potential biomarkers for cervical cancer diagnosis and prognosis. In the present study, expression levels of miR-485 were detected in cervical cancer tissues and cell lines. The effects of miR-485 overexpression on the proliferation and invasion of cervical cancer cells were determined with Cell Counting kit-8 and Transwell invasion assays. The mechanisms underlying the action of miR-485 in cervical cancer were investigated using bioinformatics analysis, a luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction and western blot analysis. In addition, the association between miR-485 and metastasis associated in colon cancer-1 (MACC1) in cervical cancer tissues was examined. The present study demonstrated that miR-485 expression was significantly downregulated in cervical cancer tissues and cell lines. Reduced miR-485 expression in patients with cervical cancer was correlated with International Federation of Gynecology and Obstetrics stage and lymph node metastasis. Furthermore, restored expression of miR-485 significantly reduced cervical cancer cell proliferation and invasion. MACC1 was identified as a direct target gene of miR-485 in cervical cancer. MACC1 expression was significantly upregulated in cervical cancer specimens and was inversely correlated with miR-485 expression. Additionally, the restored expression of MACC1 eliminated the suppressive effects of miR-485 overexpression on the proliferation and invasion of cervical cancer cells. Notably, the upregulation of miR-485 suppressed the MET proto-oncogene, receptor tyrosine kinase (Met)/RAC-α serine/threonine-protein kinase (AKT) signaling pathway. These results demonstrated that miR-485 may perform its tumor suppressive function in cervical cancer by directly targeting MACC1 and inhibiting the Met/AKT signaling pathway. Therefore, the miR-485/MACC1 axis may be a novel and effective therapeutic target in cervical cancer.

Introduction

Cervical cancer ranks as the third most common cancer and the fourth leading cause of cancer-associated mortality among females worldwide (1). Cervical cancer cases in developing countries account for >80% of all cases of cervical cancer, given the absence of widespread screening in these countries (2). Approximately 58,000 cervical cancer cases are diagnosed and >20,000 cervical cancer-associated mortalities are reported in China each year (3). Surgical resection combined with radiotherapy and chemotherapy remains the major therapeutic strategy for cervical cancer treatment (4). Despite remarkable advances in cervical cancer diagnosis and therapies, the prognosis of patients at the advanced stage remains unsatisfactory, with a five-year survival rate of <40% (5). Recurrence, as well as local and distant metastases, are the predominant reasons for poor patient prognosis (6). Therefore, a deeper understanding of the molecular mechanisms associated with cervical cancer development and progression is critical to develop novel and effective therapeutic strategies for this malignancy.

MicroRNAs (miRNAs/miRs) are a large group of evolutionarily conserved, non-coding, single-stranded RNAs, ~19-24 nucleotides in length (7). miRNAs regulate gene expression through translational suppression and/or mRNA degradation by completely or partially binding to the 3'-untranslated region (3'-UTR) of their target genes (8). A total of >1,000 mature human miRNAs have been identified, and these may regulate the expression of at least one-third of protein-coding genes in the human genome (9). A growing number of miRNAs have been identified to be dysregulated in numerous types of human cancer, including cervical (10), prostate (11), gastric (12) and lung cancer (13). The dysregulation of miRNAs is involved in tumor onset and development by affecting various biological processes, including the cell
cycle, proliferation, apoptosis, differentiation, metastasis and angiogenesis (14-16). Aberrantly expressed miRNAs in human cancer may serve as either tumor suppressors or promoters by downregulating the expression of oncogenes or tumor suppressor genes, respectively (17). Therefore, miRNAs may be potential therapeutic targets in cancer treatment strategies.

miR-485 is aberrantly expressed in several types of human cancer, including glioblastoma (18,19), gastric cancer (20) and lung adenocarcinoma (21). However, to the best of the authors' knowledge, the expression pattern, biological functions and underlying mechanisms of miR-485 in cervical cancer have not yet been investigated. Therefore, the present study aimed to detect the expression of miR-485 in cervical cancer tissues and cell lines. In addition, the clinical significance of miR-485 in cervical cancer was evaluated, and the effects of miR-485 overexpression on cancer cell proliferation and invasion were analyzed. Furthermore, the molecular mechanisms underlying the actions of miR-485 in cervical cancer were investigated. The results of the present study provided further insight into the molecular mechanisms underlying the pathogenesis of cervical cancer and validated the potential of miR-485 as a novel target in cervical cancer treatment.

Materials and methods

Clinical tissues and cell lines. A total of 49 paired cervical cancer and corresponding adjacent non-tumorous tissues were collected from patients (aged 46-71 years old) diagnosed with cervical cancer and treated via surgical resection at Weifang People's Hospital (Weifang, China) between May 2014 and October 2016. No patients had received radiotherapy, chemotherapy or other treatments prior to surgery. All tissue specimens were rapidly frozen in liquid nitrogen and stored in a -80˚C super-cold refrigerator until RNA extraction. The present research was approved by the Ethics Committee of Weifang People's Hospital. All participants provided written informed consent.

A total of four human cervical cancer cell lines were purchased from the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China): HeLa, SiHa, C33A and CaSkI. The normal human cervical epithelial cell line Ect1/E6E7 was obtained from the American Type Culture Collection (Manassas, VA, USA). All cell lines were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 mg/ml penicillin and 100 mg/ml streptomycin (all purchased from Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA), and were cultured at 37˚C in an incubator with 5% CO₂ and 95% air.

RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc.) was applied to extract the total RNA from cells and tissue specimens, according to the manufacturer’s protocol. For the analysis of miR-485 expression, a TaqMan miRNA Reverse Transcription kit (Applied Biosystems; Thermo Fisher Scientific, Inc.) was used to synthesize cDNA.

The temperature protocol for reverse transcription was as follows: 16˚C for 30 min, 42˚C for 30 min and 85˚C for 5 min. Following this, qPCR was performed using a TaqMan miRNA PCR kit (Applied Biosystems; Thermo Fisher Scientific, Inc.). The thermocycling conditions for qPCR were as follows: 50˚C for 2 min and 95˚C for 10 min; followed by 40 cycles of denaturation at 95˚C for 15 sec; and annealing/extension at 60˚C for 60 sec.

For the detection of metastasis associated in colon cancer-1 (MACC1) mRNA expression, total RNA was converted into cDNA using Moloney murine leukemia virus reverse transcriptase (Fermentas; Thermo Fisher Scientific, Inc.), followed by qPCR with SYBR Premix Ex Taq™ (Takara Biotechnology Co., Ltd., Dalian, China). The reaction for reverse transcription included 1 μl Oligo (dT)12-18 (500 μg/ml), 1 μl dNTP Mix (10 mM), 4 μl 5X First-Strand Buffer, 2 μl DTT (0.1 M), 1 μl RNaseOUT™ Recombinant Ribonuclease Inhibitor (40 units/μl), 1 μl Moloney murine leukemia virus reverse transcriptase, 1 μg total RNA and distilled water. The temperature protocol used for reverse transcription was as follows: 65˚C for 5 min, 37˚C for 2 min, 37˚C for 50 min and 70˚C for 15 min. The cycling conditions for qPCR were as follows: 5 min at 95˚C; followed by 40 cycles of 95˚C for 30 sec and 65˚C for 45 sec. The expression levels of miR-485 and MACC1 mRNA were normalized to the expression level of U6 small nuclear RNA and GAPDH, respectively. Theprimers were designed as follows: miR-485 forward, 5'-CCAAGCTTCACCATCTGAGCAG-3' and reverse, 5'-CGGGATCCGTAGTCAATACGTGATC-3'; U6 forward, 5'-GCTTCGCGACGACATATACATAATG-3' and reverse, 5'-CGTCCTGGAATTTGTCGATG-3'; and GAPDH forward, 5'-CACAACCTTGCGAGGTCGA-3' and reverse, 5'-AAAGTGTGGGTTTCCCC-3'; and GAPDH forward, 5'-CAGGGTACCAACGGATTTGTCGATG-3' and reverse, 5'-AGCCCTTACCATGGTGAA-3'. Relative gene expression was quantified by the 2ΔΔCt method (22).

Oligonucleotide and plasmid transfection. miR-485 mimics and corresponding negative control miRNA (miR-NC) were acquired from Guangzhou RiboBio Co., Ltd. (Guangzhou, China). MACC1 overexpression plasmid (pcDNA3.1-MACC1) and empty pcDNA3.1 plasmid were synthesized by Shanghai GenePharma Co., Ltd. (Shanghai, China). Cells were plated into 6-well plates at a density of 6x10^5 cells/well and cultured at 37˚C in DMEM containing 10% FBS, 100 mg/ml penicillin and 100 mg/ml streptomycin. Once cells had grown to 70% confluence, cells were transfected with miR-485 mimics (100 pmol), miR-NC (100 pmol), pcDNA3.1 (4 μg) or pcDNA3.1-MACC1 plasmids (4 μg) using Lipofectamine 2000 reagent (Invitrogen; Thermo Fisher Scientific, Inc.), according to the manufacturer’s protocol. Cell Counting kit-8 (CCK-8) and Transwell invasion assays were performed 24 h post-transfection.

Cell Counting kit-8 (CCK-8) assay. Cell proliferation was evaluated with a CCK-8 assay. Transfected cells were collected at 24 h post-transfection, a single cell suspension was prepared and seeded into 96-well plates at a density of 3x10^3 cells/well. Following incubation at 37˚C for 0, 24, 48
and 72 h, the CCK-8 assay was performed, in accordance with the manufacturer's instructions. Briefly, 10 µl CCK-8 solution (Dojindo Molecular Technologies, Inc., Shanghai, China) was added into each well. The plates were subsequently incubated at 37°C with 5% CO₂ for a further 2 h. Optical density was detected at a wavelength of 450 nm with a microplate reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Transwell invasion assay. Transwell chambers (pore size, 8 µm) coated with Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) were used to determine cell invasion capacity. A total of 1x10⁵ transfected cells were suspended in FBS-free DMEM and plated into the upper Transwell chambers. The lower Transwell chambers were filled with 500 µl DMEM, containing 20% FBS as a chemoattractant. After 24 h incubation at 37°C with 5% CO₂, the cells remaining on the upper surfaces of the Transwell chambers were carefully removed with cotton swabs. Invasive cells were fixed with 4% paraformaldehyde at room temperature for 15 min and stained with 0.05% crystal violet solution at room temperature for 15 min. The number of invasive cells was counted under an inverted microscope (magnification, ×200; IX31; Olympus Corporation, Tokyo, Japan) with five randomly selected fields for each chamber.

Bioinformatics prediction. The following online miRNA target prediction algorithms were utilized to predict the potential targets of miR-485: TargetScan (release 7.1; www.targetscan.org/vert_71/) and miRanda (2010 release; 34.236.212.39/microrna/home.do).

Luciferase reporter assay. The 3'-UTR of MACC1 containing the putative wild-type (WT) miR-485 binding sites or mutant (Mut) miR-485 binding sites was synthesized (Shanghai GenePharma Co., Ltd.) and cloned into the pGL3-control vector (Ambion; Thermo Fisher Scientific, Inc.), and designated as pGL3-MACC1-3'-UTR WT or pGL3-MACC1-3'-UTR Mut, respectively. Cells were plated into 24-well plates at a density of 1.5x10⁵ cells/well. Subsequently, cells were co-transfected with miR-485 mimics or miR-NC and pGL3-MACC1-3'-UTR WT or pGL3-MACC1-3'-UTR Mut, using Lipofectamine 2000 according to the manufacturer's instructions. Cells were harvested and subjected to luciferase activity detection using a dual-luciferase reporter assay system (Promega Corporation, Madison, WI, USA). The independent two-tailed Student's t-test and one-way analysis of variance (ANOVA) were utilized to compare the differences between groups. p<0.05 was considered to indicate a statistically significant difference.

Results

miR-485 is underexpressed in cervical cancer tissues and cell lines. To elucidate the expression pattern of miR-485 in cervical cancer, its expression was initially detected in 49 paired cervical cancer and corresponding adjacent non-tumor tissues. RT-qPCR analysis revealed that miR-485 expression in cervical cancer tissues was significantly decreased compared with adjacent non-tumor tissues (Fig. 1A; P<0.05). To investigate the clinical significance of miR-485 expression in cervical cancer, all recruited patients with cervical cancer were divided into either the low miR-485 expression group (n=25) or the high miR-485 expression group (n=24) on the basis of the median cut-off level (0.514) of miR-485 expression. Low miR-485 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.001) and lymph node metastasis (P=0.015). However, miR-485 expression and other clinicopathological characteristics, including age, tumor size and family history of cancer, were not significantly associated (P>0.05; Table I). Furthermore, miR-485 expression was compared in four human cervical cancer cell
miR-485 inhibits the proliferation and invasion of cervical cancer cells. To identify the biological functions of miR-485 in cervical cancer, miR-485 mimics were transfected into HeLa and SiHa cells, which exhibited relatively low miR-485 expression among the four cervical cancer cell lines. At 48 h post-transfection, miR-485 was significantly overexpressed in HeLa and SiHa cells transfected with miR-485 mimics compared with cells transfected with miR-NC (Fig. 2A; P<0.05). CCK-8 and Transwell invasion assays were subsequently performed to investigate the effects of miR-485 overexpression on cervical cancer cell proliferation and invasion, respectively. The results revealed that restored expression of miR-485 reduced the proliferation (Fig. 2B; P<0.05) and invasion (Fig. 2C; P<0.05) of HeLa and SiHa cells. These results suggested that miR-485 may have an inhibitory role in cervical cancer progression.

miR-485 directly targets MACC1 in cervical cancer. miRNAs regulate cellular processes by interacting with the 3'-UTR sites of their target genes (8). Therefore, bioinformatics analysis was conducted in order to identify the target genes of miR-485. MACC1 (Fig. 3A) was predicted as a candidate target of miR-485 and was selected as the focus of the present study, as it has been implicated in the occurrence and development of cervical cancer (23-27). To confirm this hypothesis, a luciferase reporter assay was performed to confirm the binding of miR-485 to the 3'-UTR of MACC1. HeLa and SiHa cells were transfected with miR-485 mimics or miR-NC along with pGL3-MACC1-3'-UTR Wt or pGL3-MACC1-3'-UTR Mut. As presented in Fig. 3B, the upregulation of miR-485 expression reduced the luciferase activity of pGL3-MACC1-3'-UTR Wt (P<0.05). However, altering miR-485 expression did not affect the luciferase activity of pGL3-MACC1-3'-UTR Mut in HeLa and SiHa cells (Fig. 3B). To further examine miR-485-mediated MACC1 expression in cervical cancer, RT-qPCR and western blot analysis was performed to detect MACC1 mRNA and protein expression in HeLa and SiHa cells transfected with miR-485 mimics or miR-NC. The restored expression of miR-485 significantly decreased the expression of MACC1 in HeLa and SiHa cells at the mRNA (Fig. 3C; P<0.05) and protein (Fig. 3D; P<0.05) levels compared with the miR-NC-transfected cells. These results suggested that MACC1 was a direct target gene of miR-485 in cervical cancer.

MACC1 upregulation is inversely correlated with miR-485 expression in cervical cancer tissues. To further examine the association between miR-485 and MACC1 in cervical cancer, MACC1 expression was quantified in cervical cancer tissues and corresponding adjacent non-tumor tissues. RT-qPCR analysis revealed that MACC1 mRNA was overexpressed in cervical cancer tissues compared with adjacent non-tumor tissues (Fig. 4A; P<0.05). Additionally, through Spearman’s correlation analysis, it was demonstrated that miR-485 and MACC1 mRNA expression was inversely correlated in cervical cancer tissues (Fig. 4B; r=-0.5633; P<0.0001). Furthermore, western blot analysis revealed that MACC1 protein expression was upregulated in cervical cancer tissues, compared with adjacent non-tumor tissues (Fig. 4C).

Table I. Association between miR-485 expression and the clinicopathological characteristics of patients with cervical cancer.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>Low</th>
<th>High</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>0.376</td>
</tr>
<tr>
<td>≥50</td>
<td>36</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Tumor size, cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><4</td>
<td>27</td>
<td>12</td>
<td>15</td>
<td>0.308</td>
</tr>
<tr>
<td>≥4</td>
<td>22</td>
<td>13</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Family history of cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>0.444</td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>23</td>
<td>6</td>
<td>17</td>
<td>0.001*</td>
</tr>
<tr>
<td>III-IV</td>
<td>26</td>
<td>19</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>24</td>
<td>8</td>
<td>16</td>
<td>0.015*</td>
</tr>
<tr>
<td>Positive</td>
<td>25</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05. FIGO, International Federation of Gynecology and Obstetrics; miR-485, microRNA-485.

Restoration of MACC1 expression reverses the suppressive effects of miR-485 overexpression in cervical cancer. To further analyze whether the tumor-suppressive role of miR-485 in cervical cancer was mediated by MACC1, HeLa and SiHa cells were co-transfected with miR-485 mimics and pcDNA3.1-MACC1 or pcDNA3.1. First, HeLa and SiHa cells were transfected with pcDNA3.1-MACC1 or empty pcDNA3.1. Western blot analysis demonstrated that MACC1 protein expression was markedly upregulated in HeLa and SiHa cells following transfection with pcDNA3.1-MACC1, compared with empty pcDNA3.1 (Fig. 5A; P<0.05). Co-transfection confirmed that the downregulation of MACC1 protein expression by miR-485 overexpression was reversed in HeLa and SiHa cells following co-transfection with pcDNA3.1-MACC1 (Fig. 5B; P<0.05). CCK-8 and Transwell invasion assays subsequently revealed that the restored expression of MACC1 reversed the miR-485-mediated suppression of HeLa and SiHa cell proliferation (Fig. 5C; P<0.05) and invasion (Fig. 5D; P<0.05). These results collectively indicated that miR-485 may have inhibited the proliferation and invasion of cervical cancer cells, at least partly through MACC1 expression downregulation.
Figure 1. miR-485 expression is downregulated in cervical cancer tissues and cell lines. (A) miR-485 expression was detected by RT-qPCR analysis in 49 paired cervical cancer tissues and corresponding adjacent non-tumor tissues. *P<0.05 vs. non-tumor tissues. (B) Relative miR-485 expression was detected by RT-qPCR analysis in four cervical cancer cell lines (HeLa, SiHa, C33A and CaSki) and Ect1/E6E7, a normal human cervical epithelial cell line. *P<0.05 vs. Ect1/E6E7. miR-485, microRNA-485; RT-qPCR, reverse transcription-quantitative polymerase chain reaction.

Figure 2. Restored miR-485 expression represses HeLa and SiHa cell proliferation and invasion. (A) miR-485 expression in HeLa and SiHa cells transfected with miR-485 mimics or miR-NC was detected by RT-qPCR analysis. (B) HeLa and SiHa cells were transfected with miR-485 mimics or miR-NC. Cell proliferation was quantified through a cell counting kit-8 assay at different time points. (C) The invasive capacity of HeLa and SiHa cells transfected with miR-485 mimics or miR-NC was evaluated through Transwell invasion assays (magnification, x200). *P<0.05 vs. respective miR-NC group. miR-485, microRNA-485; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; miR-NC, negative control miRNA.
Figure 3. MACC1 is a direct target gene of miR-485 in cervical cancer. (A) miR-485 Wt and Mut binding sites in the 3'-UTR of MACC1. (B) A luciferase reporter assay was conducted to determine whether miR-485 directly targets the 3'-UTR of MACC1. HeLa and SiHa cells were co-transfected with luciferase reporter plasmid and miR-485 mimics or miR-NC. Luciferase activity was analyzed with a dual-luciferase reporter assay system following 48 h of incubation. (C) MACC1 mRNA and (D) protein expression was detected in HeLa and SiHa cells following transfection with miR-485 mimics or miR-NC. *P<0.05 vs. miR-NC. MACC1, metastasis associated in colon cancer-1; Wt, wild-type; Mut, mutant; miR-485, microRNA-485; 3'-UTR, 3'-untranslated region; miR-NC, negative control miRNA.

Figure 4. MACC1 is overexpressed in cervical cancer, and its expression is inversely correlated with miR-485 expression. (A) Reverse transcription-quantitative polymerase chain reaction was performed to quantify the mRNA expression of MACC1 in 49 paired cervical cancer tissues and corresponding adjacent non-tumor tissues. *P<0.05. (B) Spearman's correlation analysis demonstrated that miR-485 expression was inversely correlated with MACC1 mRNA levels in cervical cancer tissues. r=-0.5633, P<0.0001. (C) MACC1 protein expression in cervical cancer tissues and corresponding adjacent non-tumor tissues. MACC1, metastasis associated in colon cancer-1; miR-485, microRNA-485; T, cervical cancer tissue; N, non-tumor tissue.
miR-485 affects the Met/AKT signaling pathway in cervical cancer. MACC1 is involved in the regulation of the Met/AKT pathway (28,29). Therefore, the effect of miR-485 expression on the Met/AKT signaling pathway in cervical cancer...
was analyzed. Cells were transfected with miR-485 mimics along with pcDNA3.1-MACC1 or pcDNA3.1. Western blot analysis was performed in order to detect Met, p-AKT and AKT protein expression levels 72 h post-transfection. The results demonstrated that miR-485 overexpression decreased Met and p-AKT expression without altering the total AKT expression. In addition, Met and p-AKT protein expression in HeLa and SiHa cells was restored following co-transfection with pcDNA3.1-MACC1 (Fig. 6). These results suggested that miR-485 suppressed the Met/AKT signaling pathway in cervical cancer by inhibiting MACC1 expression.

Discussion

A large body of evidence indicates that miRNAs have an essential role in the development and progression of cervical cancer (30-32). Thus, miRNAs with dysregulated expression in cervical cancer are potential biomarkers for the diagnosis and prognosis of this disease. In the present study, it was demonstrated that miR-485 expression was downregulated in cervical cancer tissues and cell lines. Low miR-485 expression levels in cervical cancer were correlated with FIGO stage and lymph node metastasis. The ectopic expression of miR-485 inhibited the proliferation and invasion of cervical cancer cells. Notably, it was revealed that MACC1 was a direct target gene of miR-485 in cervical cancer. MACC1 upregulation was inversely correlated with miR-485 expression in cervical cancer tissues. Furthermore, overexpression of MACC1 reversed the suppressive role of miR-485 overexpression in cervical cancer. miR-485 overexpression also suppressed the Met/AKT signaling pathway in cervical cancer. The results of the present study determined the expression pattern and biological roles of miR-485 in cervical cancer, and suggested that miR-485 may be a potential therapeutic target in the treatment of cervical cancer.

The expression of miR-485 is dysregulated in a number of human cancer types. For example, miR-485 is underexpressed in glioblastoma tissues, cell lines and blood serum. In addition, decreased miR-485 expression is correlated with poor progression-free survival and overall survival in patients with glioblastoma (18,19). In gastric cancer, the downregulation of miR-485 is strongly associated with tumor size, invasion depth, lymph node metastasis and tumor-node-metastasis (TNM) stage. Patients with gastric cancer exhibiting low miR-485 expression have shorter survival times than those exhibiting high miR-485 expression. In addition, low miR-485 expression is an independent predictor of poor prognosis in patients with gastric cancer (20). Furthermore, miR-485 expression is low in lung adenocarcinoma tumor tissues and cell lines, and is significantly correlated with tumor metastasis (21). In hepatocellular carcinoma, miR-485 expression is downregulated in tumor tissues and cell lines, and is associated with tumor size, TNM stage, metastasis and tumor number (33,34). miR-485 expression is also downregulated in bladder cancer (35), breast cancer (36,37), melanoma (38) and oral-tongue squamous cell carcinoma (39). These findings suggest that miR-485 is frequently downregulated in human malignancies and is therefore a potential biomarker for the detection and prognosis of specific types of human cancer.

The upregulation of miR-485 has been demonstrated to decrease the proliferation, colony formation, migration and invasion of glioblastoma cells, in addition to promoting apoptosis in vitro and suppressing tumor growth in vivo (18,40). Kang et al (41) and Duan et al (42) reported that miR-485 overexpression attenuates cell proliferation and metastasis in vitro and represses tumor growth in vivo. Mou and Liu (21) demonstrated that restored expression of miR-485 significantly decreases cell metastasis and epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Guo et al (33) and Sun et al (34) revealed that the ectopic expression of miR-485 inhibits cell growth and metastasis in vitro, as well as reducing tumor growth in vivo. Chen et al (35) reported that miR-485 overexpression suppresses cell metastasis and EMT in bladder cancer. Lou et al (36) and Anaya-Ruiz et al (37) demonstrated that miR-485 decreases cell proliferation, colony formation, mitochondrial respiration and metastasis in breast cancer. In addition, miR-485 has a vital role in the oncogenesis of melanoma (38) and oral tongue squamous cell carcinoma (39). Taken together, these findings indicate that miR-485 may be an effective target of antineoplastic agents.

Numerous targets of miR-485 have been previously identified. These targets include: p21 (RAC1) activated kinase 4 (PAK1) (18) and tumor protein D52 like 2 (40) in glioma; flotillin (Flot)1 (41) and nudix hydrolase (42) in gastric cancer; Flot2 (21)
in lung adenocarcinoma; stanniocalcin 2 (33) and extracellular matrix metalloproteinase inducer (34) in hepatocellular carcinoma; high mobility group AT-hook 2 (35) in bladder cancer; peroxisome proliferator-activated receptor γ coactivator 1-α (36) in breast cancer; frizzled class receptor 7 (38) in melanoma; and PAK1 (39) in oral tongue squamous cell carcinoma. In the present study, it was demonstrated that MACC1 is a direct target of miR-485 in cervical cancer. Previous studies have revealed that MACC1 is overexpressed in various malignant tumors, including gastric cancer (43), colorectal cancer (44), hepatocellular carcinoma (45) and glioma (46). Furthermore, MACC1 is upregulated in cervical cancer and is positively correlated with FIGO stage, pelvic lymph node metastasis, recurrence and poor survival in patients with cervical cancer (24). Additionally, patients with cervical cancer exhibiting high MACC1 levels have a worse prognosis than those with low MACC1 levels (23). MACC1 is involved in the tumorigenesis and tumor development of cervical cancer by regulating multiple biological behaviors, including cell proliferation, apoptosis, migration, invasion, metastasis and angiogenesis (24-27). Therefore, targeting MACC1 may be a potentially effective strategy for the treatment of patients with cervical cancer.

In conclusion, it was confirmed that miR-485 has tumor suppressive roles in cervical cancer by directly targeting MACC1 and inhibiting the Met/AKT signaling pathway. The findings of the present study provided novel evidence for the development of miR-485/MACC1/Met/AKT-targeted therapies for patients with cervical cancer.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors’ contributions

XJ and SW designed the present study. SW and YZ performed reverse transcription-quantitative polymerase chain reaction, Cell Counting kit-8 assays and Transwell invasion assays. SY performed luciferase reporter assays and western blot analysis. XJ performed data analysis. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

The present research was approved by the Ethics Committee of Weifang People’s Hospital. All participants provided written informed consent.

Consent for publication

All participants provided written informed consent.

Competing interests

The authors declare that they have no competing interests.

References

