Open Access

Progranulin protects the mouse retina under hypoxic conditions via inhibition of the Toll‑like receptor‑4‑NADPH oxidase 4 signaling pathway

  • Authors:
    • Zhi‑Peng You
    • Meng‑Jia Yu
    • Yu‑Lan Zhang
    • Ke Shi
  • View Affiliations

  • Published online on: November 8, 2018     https://doi.org/10.3892/mmr.2018.9634
  • Pages: 382-390
  • Copyright: © You et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

To investigate the function of progranulin on the retina under hypoxic conditions, 8‑week‑old C57BL/6 mice were divided into normal condition and hypoxic condition groups (n=24 mice/group). The hypoxia model was established through intravitreal injection of 9 mM cobalt chloride. Subsequently, 10 mM progranulin and an equal amount of PBS were injected into the right and left eyes, respectively. Photoreceptor function was examined using electroretinogram (ERG) analysis. Morphological alterations were examined using immunofluorescence co‑localization, retinal vascular inflammation was examined using the leukostasis assay, and signaling pathways were screened using immunoblotting. The results revealed that ERG amplitude was significantly lower under hypoxic conditions compared with under normal conditions. Furthermore, the amplitude was significantly reduced in the PBS‑injected eyes compared with in the progranulin‑injected eyes. Morphological examination demonstrated that the number of rods in the PBS‑injected eyes was decreased compared with in the progranulin‑injected eyes under hypoxic conditions. In addition, the arrangement of the cones was sparse and the morphology of the outer segments was short and small. Although the number of adherent leukocytes in the progranulin‑injected eyes was higher in the hypoxic mice compared with in those under normal conditions, the number was only 52.31% of the number detected in the PBS‑injected eyes. Analysis of the signaling pathways demonstrated that the protective effects of progranulin on retinas under hypoxic conditions were regulated by the Toll‑like receptor 4 (TLR4)‑NADPH oxidase 4 (NOX4) pathway, instead of the caspase and Wnt/β‑catenin pathways. In conclusion, progranulin exerted protective effects on the function and morphology of photoreceptors in a hypoxic environment, and could reduce retinal vascular inflammation, through inhibition of the TLR4‑NOX4 pathway.
View Figures
View References

Related Articles

Journal Cover

January-2019
Volume 19 Issue 1

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
You ZP, Yu MJ, Zhang YL and Shi K: Progranulin protects the mouse retina under hypoxic conditions via inhibition of the Toll‑like receptor‑4‑NADPH oxidase 4 signaling pathway. Mol Med Rep 19: 382-390, 2019
APA
You, Z., Yu, M., Zhang, Y., & Shi, K. (2019). Progranulin protects the mouse retina under hypoxic conditions via inhibition of the Toll‑like receptor‑4‑NADPH oxidase 4 signaling pathway. Molecular Medicine Reports, 19, 382-390. https://doi.org/10.3892/mmr.2018.9634
MLA
You, Z., Yu, M., Zhang, Y., Shi, K."Progranulin protects the mouse retina under hypoxic conditions via inhibition of the Toll‑like receptor‑4‑NADPH oxidase 4 signaling pathway". Molecular Medicine Reports 19.1 (2019): 382-390.
Chicago
You, Z., Yu, M., Zhang, Y., Shi, K."Progranulin protects the mouse retina under hypoxic conditions via inhibition of the Toll‑like receptor‑4‑NADPH oxidase 4 signaling pathway". Molecular Medicine Reports 19, no. 1 (2019): 382-390. https://doi.org/10.3892/mmr.2018.9634