Activation of the PI3K-AKT pathway in human malignant mesothelioma cells

YUTARO SUZUKI1,3, HIDEKI MURAKAMI1, KOJI KAWAGUCHI1,4, TETSUO TANIGUCHI1,4, MAKIKO FUJII1, KEIKO SHINJO1, YUTAKA KONDO1, HIROTAKA OSADA1, KAORU SHIMOKATA1, YOSHITSUGU HORIO2, YOSHINORI HASEGAWA3, TOYOAKI HIDA2 and YOSHITAKA SEKIDO1

1Division of Molecular Oncology, Aichi Cancer Center Research Institute; 2Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681; Departments of 3Respiratory Medicine, and 4Cardio-Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550; 5Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan

Received September 10, 2008; Accepted December 29, 2008

DOI: 10.3892/mmr_0000081

Abstract. Malignant mesothelioma (MM) is a highly aggressive neoplasm, which is associated with asbestos exposure. The dysregulated phosphatidylinositol 3-kinase (PI3K)-AKT pathway plays an important role in cell proliferation, survival and motility in various cancers. In this study, we analyzed the activation status and underlying mechanisms of this pathway in MM cells using 21 cell lines. AKT activation was observed in 13 (62%) of the 21 MM cell lines under serum-starved conditions. Two cell lines, ACC-MESO-1 and Y-MESO-25, showed no expression of PTEN protein, while 7 other cell lines showed low expression of PTEN mRNA and protein compared to expression levels in an immortalized normal mesothelial cell line, MeT-5A. We found that PTEN inactivation in the ACC-MESO-1 and Y-MESO-25 lines was due to a 39.4-kb deletion including PTEN exon 2, and to a 7.7-kb deletion including exon 1, respectively. Re-expression of PTEN in these cells reduced the activity of colony formation in vitro. In contrast, no mutation of PIK3CA or LKB1 was found in any of the MM cell lines. These findings suggest that AKT is frequently activated in MM cells, in part due to the downregulation of PTEN. Thus, the PI3K-AKT signaling pathway is a potential therapeutic target for MM.

Introduction

Malignant mesothelioma (MM), a highly aggressive neoplasm of the pleura, peritoneum or pericardium with a very poor prognosis (1), is presently a worldwide problem due to its increasing incidence (2,3). In Japan, a recent study using an age-cohort model reported that there will be approximately 100,000 deaths due to MM in the next 40 years (4). Patients with MM are usually diagnosed at advanced stages, and the disease is refractory to conventional therapy. Therefore, the survival rate of patients with MM is very poor, with a median survival of 7-11 months following diagnosis, especially in advanced stage patients. This is despite the recent advancement in chemotherapeutic modalities that combines cisplatin and antifolate (5,6).

The long latency period between asbestos exposure and tumor development implies that multiple, and likely diverse, genetic changes are required for the malignant transformation of mesothelial cells. Many studies have been conducted to determine the key underlying genetic and epigenetic events responsible for the development of MM. Karyotyping, allele typing and comparative genomic hybridization analysis have demonstrated that most cases of MM have multiple chromosomal alterations, which include chromosome 9p21 and 22q (7-14). Inactivation of the p16INK4a/p14ARF locus at the 9p21 locus is found in over 70% of MM samples (15-17). The NF2 gene at the 22q12 locus, which is responsible for a familiar cancer syndrome of neurofibromatosis type II, has also been shown to be inactivated in 40-50% of MMs, mainly with homozygous deletion or nonsense mutation (18,19). In contrast, mutation of the p53 gene, one of the most frequently mutated genes in human malignancies, is relatively uncommon (20).

The phosphatidylinositol 3-kinase (PI3K)-AKT pathway regulates a number of normal cellular processes, including cell proliferation, survival and motility (21). AKT, also known as protein kinase B (PKB), is a serine/threonine kinase located downstream of PI3K. Activated PI3K generates a lipid second messenger, phosphatidylinositol-3,4,5-tri-phosphate (PIP3), which is essential for the translocation of AKT to the plasma membrane. There, AKT is phosphorylated and activated by phosphoinositide-dependent kinase 1 (PDK1). In tumor cells, AKT can be activated by a variety of mechanisms, including the loss of PTEN, mutation of the PI3K catalytic subunit gene PIK3CA, and activation of PI3K via autocrine or paracrine
stimulation of the receptor tyrosine kinases (22,23). Recently, the LKB1 tumor suppressor gene encoding a serine/threonine kinase has also been implicated in the regulation of PTEN activity (24).

There have been a limited number of studies of MM seeking to analyze this signaling cascade. For example, Altmare et al reported that elevated phospho-AKT staining was observed in 17 (65%) of 26 MM specimens, and loss of PTEN was detected in 1 of 9 human MM cell lines (25). Papp et al investigated PTEN point mutations in 18 mesothelioma specimens with single-strand polymorphism analysis, but no mutations were detected (26). To the best of our knowledge, there have been no detailed reports analyzing PIK3CA and LKB1 mutation status in MM. Thus, although activation of the PI3K-AKT pathway is likely to be significantly involved in MM development, the molecular mechanism by which AKT is activated in MM remains unclear. In the present study, we carried out mutation and expression analyses of the genes mainly associated with the PI3K-AKT pathway in MM cells. We observed frequent dysregulation of the PI3K-AKT pathway in MMs, with PTEN inactivation being one of the important mechanisms underlying its activation.

Materials and methods

Cell lines. The study employed 21 MM cell lines and 1 non-MM cell line (Me-T-5A). In addition to 4 cell lines, including ACC-MESO-1, ACC-MESO-4, Y-MESO-8A and Y-MESO-8D that have previously been reported (27), 11 cell lines, including Y-MESO-9, Y-MESO-12, Y-MESO-14, Y-MESO-21, Y-MESO-22, Y-MESO-25, Y-MESO-26B, Y-MESO-27, Y-MESO-28, Y-MESO-29 and Y-MESO-30, were established in our laboratory and will be described in a future report. Y-MESO-8A and Y-MESO-8D, established from the same patient, showed distinct morphological patterns (27). NCI-H28, NCI-H290, NCI-H2052, NCI-H2373 and NCI-H2452 were gifts from Dr Adi F. Gazdar. MSTO-211H and MeT-5A were purchased from the American Type Culture Collection (Rockville, MD, USA) and MeT-5A was cultured according to the instructions. All MM cell lines were maintained in RPMI-1640 medium (Sigma-Aldrich, Irvine, UK) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA). Random-primed, first-strand cDNA was synthesized from 3 μg total RNA using Superscript II according to the manufacturer's protocol. Cloning of PTEN homozygous deletion region breakpoints. Genomic PCR of PTEN covering exon 1 or exon 2 was carried out using the primer sets PTEN-S1, 5'-GTTACCTCCCTTGGAAGAATGA-3' (sense) and PTEN-AS1, 5'-CTTTACTGGGATATGCTAAAA-3' (sense) and PTEN-AS2, 5'-CTACTTAAGGGATGTATGCTG-3' (antisense). PCR products were analyzed by gel electrophoresis on 2% agarose gel and sequenced.

Western blot analysis. Preparation of total cell lysates and Western blotting were carried out as described previously (27). In brief, cells growing subconfluently were rinsed twice with PBS, lysed in SDS sample buffer (62.5 mM Tris pH 6.8, 2% SDS, 2% mercaptoethanol, 10% glycerol) and homogenized. Total cell lysate (30 μg) was subjected to SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membranes (Millipore, Bedford, MA, USA). Following blocking with 3% non-fat dry milk, the filters were incubated with the primary antibody, washed with PBS with 0.5% Tween-20, reacted with the secondary antibody, and then detected with ECL (Amersham Biosciences, Buckinghamshire, UK). Anti-AKT, anti-phosphorylated-AKT (Ser473) and anti-PTEN antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA) and anti-β-actin antibody from Sigma (St. Louis, MO, USA).

Constructs. A 1.2-kilobase (kb) fragment covering the entire human PTEN coding region was amplified using RT-PCR and introduced into the pcDNA3.1-V5/HIS expression vector (Invitrogen) to generate a wild-type PTEN expression construct (pcDNA-PTENwt-V5/HIS). A PTEN mutant-type (H123Y) expression construct (pcDNA-PTENmt123Y-V5/HIS) was synthesized using the QuickChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) according
to the manufacturer’s instructions. The sequences of all constructs were confirmed. The expression vector of the dominant negative form of AKT (AKT DN) has been described previously (29).

Colony formation assay. Cells were cultured to 70% confluence on 6-well plates and transfected with the wild-type PTEN, mutant-type PTEN, or pcDNA3.1-V5/HIS vector along with FuGENE 6 reagent following the manufacturer’s protocol (Roche Diagnostics, Basel, Switzerland). After 24 h, G418 was added to the medium for a final concentration of 400 μg/ml. After 16-18 days, the cells were stained with methylene blue.

Results

Activation of the PI3K-AKT pathway in malignant mesothelioma cell lines. Dysregulated activation of the PI3K-AKT signaling pathway has been demonstrated in a variety of human malignancies. To determine the frequency and mechanisms underlying the activation of this pathway in MM, we analyzed 21 MM cell lines as well as the MeT-5A cell line, an immortalized cell line from normal mesothelial cells. Western blot analysis was performed for AKT and PTEN, a tumor suppressor involved in the PI3K-AKT pathway. Under serum-starved conditions, we found that AKT was phosphorylated (activated) at a high level in 6 cell lines (ACC-MESO-1, ACC-MESO-4, Y-MESO-22, Y-MESO-25, Y-MESO-29 and Y-MESO-30) and at mid-level in 7 cell lines (NCI-H28, NCI-H2052, NCI-H2373, Y-MESO-8D, Y-MESO-12, Y-MESO-26B and Y-MESO-27), but was undetectable in another 8 cell lines and MeT-5A (Fig. 1A). Thus, overall elevated AKT activation was shown in 13 (62%) MM cell lines.

Mutational analyses of PIK3CA, LKB1 and PTEN in malignant pleural mesothelioma cell lines. We performed mutation analyses for the PIK3CA and LKB1 genes, since their activating mutations are known to be responsible for AKT activation. All 20 exons of the PIK3CA coding region and 9 exons of LKB1 were sequenced, but no mutations were found (data not shown).

Next, we studied whether PTEN can be altered in malignant pleural mesothelioma (MPM), since PTEN inactivation is also known to be one of the major causes of AKT activation. Western blot analysis revealed that PTEN expression was completely lost in two cell lines, ACC-MESO-1 and Y-MESO-25 (Fig. 1A). Furthermore, compared to the MeT-5A level, 11 other cell lines clearly exhibited a relatively low level of PTEN, including NCI-H28, H290, H2052, H2373, H2452, MSTO-211H, Y-MESO-9, Y-MESO-14, Y-MESO-27, Y-MESO-29 and Y-MESO-30. Since the original pathological specimen of the Y-MESO-25 cell line was available, we performed
Figure 2. Expression analysis of PTEN mRNA in MM cell lines. (A) Quantitative RT-PCR analysis of PTEN with a primer set covering exon 6 to 8. The relative expression of MeT-5A was arbitrarily set to 1.0. Data represent mean ± SD. Y-MESO-25 showed an undetectable level of PTEN mRNA expression and 10 other cell lines exhibited lower expression under 0.5. (B) RT-PCR analysis with a PTEN primer set covering exon 1 to 6 showed an aberrant sized band in ACC-MESO-1. (C) Sequence analysis of the amplified PTEN PCR product of ACC-MESO-1. Seventy-six nucleotides (indicated by lowercase letters from 80 to 155) were intron 1 sequence which followed the exon 1. Eighty-two nucleotides (lowercase letters from 156 to 237) were also from intron 1. (D) Schematic representation of the aberrant transcript of PTEN in ACC-MESO-1 (above) and the wild-type (below). (E) Genomic PCR analysis of Y-MESO-25 and ACC-MESO-1 cells detected no PCR products of PTEN exon 1 and exon 2, respectively. NC, negative control (water blank).
immunohistochemical analysis and found additional defective expression of PTEN in the primary tumor cells (Fig. 1B and C).

PTEN expression was examined by quantitative real-time PCR (qRT-PCR) analysis using a primer set covering exons 6-8. While, as in other cell lines, the PTEN mRNA transcript in ACC-MESO-1 was detectable, a complete loss of PTEN expression was observed in Y-MESO-25 (Fig. 2A). Ten other cell lines also showed low expression of PTEN mRNA (less than half of the MeT-5A level), including NCI-H290, H2373, H2452, MSTO-211H, Y-MESO-8A, Y-MESO-9, Y-MESO-12, Y-MESO-14, Y-MESO-22 and Y-MESO-27 (Fig. 2A). RT-PCR of PTEN was then performed using various primer sets. When a primer set encompassing exons 1-5 was used, an aberrant-sized PTEN transcript (~370 bp) was detected in ACC-MESO-1 (Fig. 2B). Sequence analysis of this cDNA fragment revealed an abnormal splicing pattern with the addition of a 76-bp intron 1-fragment following exon 1 and another 82-bp intron 1-fragment between exons 1 and 3, while

Figure 3. Cloning of the homozygous deletion breakpoints of the PTEN locus in ACC-MESO-1 and Y-MESO-25. (A) Results of PCR analysis for each locus are shown by open ovals (retention) and closed ovals (homozygous deletion). Nucleotide numbers of each location are indicated according to the March 2006 human reference sequence (NCBI Build 36.1). (B) PCR amplification with the S2 and AS2 primers yielded an aberrant 334-bp product with genomic DNA from ACC-MESO-1, but not from MeT-5A (left). The sequence of the PCR product detected the breakpoint indicated by an arrow (right). (C) PCR amplification with the S1 and AS1 primers yielded an aberrant 940-bp product with genomic DNA from Y-MESO-25 and its primary tumor, but not from MeT-5A (left). The nucleotide sequence of the PCR product detected the breakpoint indicated by the arrow (right).
skipping exon 2 (Fig. 2C and D). This splicing alteration caused the addition of an extra 158 bp with the deletion of exon 2, resulting in a premature stop (Fig. 2C and D).

To determine whether a genetic mutation was responsible for PTEN inactivation, we sequenced 9 exons covering the entire coding region of the PTEN gene. Although no mutations were detected in the other 19 cell lines, no amplification of exon 1 in Y-MESO-25 or exon 2 in ACC-MESO-1 was found, indicating that these cell lines harbored a homozygous deletion of PTEN (Fig. 2E).

Homozygous deletion on the PTEN locus. We further carried out a genomic PCR analysis for these two cell lines using multiple primer sets to determine the breakpoints of the homozygous deletion regions in more detail. The results of the PCR analysis are summarized in Fig. 3A. Genomic PCR with the S2 and AS2 primer demonstrated a 530-bp PCR product in ACC-MESO-1 (Fig. 3B), which resulted from an ~40-kb deletion including exon 2. Meanwhile, in Y-MESO-25, genomic PCR with the S1 and AS1 primers detected an ~900-bp PCR product in DNA derived from the cell line as well as from its primary tumor (Fig. 3C). The Y-MESO-25 cell line was demonstrated to have a 7.7-kb homozygous deletion including the promoter region and exon 1 of PTEN.

Re-expression of PTEN or AKT dominant negative constructs reduce colony formation of MM cells. To determine whether the loss of PTEN plays a pro-oncogenic role for ACC-MESO-1 and Y-MESO-25 cell lines, we transfected a wild-type PTEN expression vector into these cell lines. In addition to the wild-type PTEN, a mutant-type construct with a tyrosine for histidine substitution at amino acid position 123 was also synthesized. This mutation has been shown to abrogate the phosphatase function of PTEN (30) (Fig. 4A). Western blot analysis showed that the wild-type but not the H123Y mutant-type of PTEN suppressed the phosphorylation status of AKT (Fig. 4B). Colony formation assay showed that wild-type, but not mutant-type, PTEN reduced the number of colonies, indicating that PTEN inactivation is critical for the cell survival or proliferation of these cell lines (Fig. 4C). AKT dominant negative construct also significantly inhibited colony formation (Fig. 4C).

Discussion

In this study, we examined the frequency and underlying mechanisms of the dysregulated PI3K-AKT pathway in MM cells. Twenty one MM cell lines were used, including 15 cell lines established in our laboratory from Japanese patients. Our results indicate that AKT was highly phosphorylated in 13 (62%) of 21 MM cell lines under serum-starved conditions, suggesting that constitutively activated AKT may be observed in most MMs. Two cell lines harbored a homozygous deletion of PTEN, and 11 cell lines showed low expression of PTEN protein, although no mutation of PIK3CA or LKB1 was detected. Re-expression of PTEN in the cell lines with PTEN homozygous deletion suppressed colony formation, indicating that PTEN inactivation was critical for cell survival or proliferation in these cell lines.

Previous immunohistochemical studies demonstrated the elevated activation of AKT in 65-84% of MM samples (25,31). Thus the frequency of AKT activation in MMs in our study using cell lines seems to be very similar to that of previous studies. Whereas one previous study reported that no PTEN mutation was detected in 18 MM specimens, another study demonstrated that a homozygous deletion of PTEN was detected in 1 of 9 MM cell lines (25,26). Thus, our finding that a PTEN homozygous deletion, but not point mutation, was present in 2 (9.5%) of 21 MM cell lines is compatible with the results of previous studies.

The loss of PTEN expression has been attributed to allelic loss or promoter hypermethylation in some malignancies (32,33). In non-small cell lung cancer, the homozygous deletion and mutation of PTEN occur rarely, although loss of hetero-
zygosity (LOH) has been reported to occur in 26% to more than 50% of tumors (34). While we did not study the LOH or methylation status of the PTEN gene, among another 19 cell lines excluding ACC-MESO-1 and Y-MESO-25, over half the lines also exhibited low PTEN mRNA and protein expression levels. Ten cell lines expressed PTEN mRNA at less than half the level observed in MeT-5A, and 11 cell lines showed significantly low expression of PTEN, with 7 cell lines (NCI-H290, H2452, MSTO-H211H, Y-MESO-9, Y-MESO-14 and Y-MESO-27) showing simultaneous suppression at the mRNA and protein level. This suggests that these cell lines had only one normal allele or suffered from hypermethylation of the other allele of the PTEN gene, resulting in low levels of PTEN mRNA and protein expression. From this standpoint, Garland et al reported that, while no PTEN expression was noted in 3 (16%) of 19 primary MMs, 15 (79%) showed only a mild intensity of staining (31). Optiz et al also reported negative PTEN expression in 62% of MPMs from an immunohistochemical study using tissue microarray containing 341 cases, with 14% being weak, 9.5% moderate, and 14.5% strong (35). Taken together with other studies, our results suggest that, as one of the underlying mechanisms, activation of the PI3K-AKT pathway is due to a PTEN homozygous deletion in ~10% of MM cases, and to the suppression of PTEN expression in a significant proportion of MM cases, probably caused either by the allelic loss or epigenetic silencing of the PTEN gene.

Meanwhile, several cell lines showed a distinct difference between the expression of PTEN mRNA/protein and AKT phosphorylation status in each MPM cell line. For example, although NCI-H290, H2452, MSTO-H211H showed low expression of PTEN at both the mRNA and protein level, AKT phosphorylation was not very obvious. Thus, significant down-regulation of PTEN does not necessarily lead directly to AKT activation. In this regard, recent evidence suggests that PTEN has other functions as a tumor suppressor, such as chromosomal instability (36). Thus, other functions of PTEN that are not involved in the dephosphorylation of PIP3 may be responsible for a pro-oncogenic role of MM cells when PTEN is suppressed. For PI3K-AKT pathway activation, it should also be considered that the activation of upstream molecules, including receptor tyrosine kinases, may play an important role. For example, hepatocyte growth factor-MET receptor signaling activation has been demonstrated to be accompanied by AKT activation in MPM cell lines (25,37). Activation of HGF/MET signaling has also been shown to induce the proliferation of MM cells via a PI3K/MEK5/Fra-1 pathway (38). Meanwhile, overexpression of EGFR and PDGFR β has been implicated in the tumorigenesis of mesothelioma (39-42). Thus, more detailed investigation of the activation status and underlying genetic abnormalities of these receptor tyrosine kinases is warranted in future, in order to reveal other possible underlying mechanisms of PI3K-AKT activation in MM cells.

Finally, exogenous expression of wild-type PTEN in the MM cell lines with a PTEN homozygous deletion clearly triggered significant cell-growth suppression, while the H123Y mutant lacking both dual-phosphatase activities was ineffective. Expression of the AKT dominant negative form also exhibited growth suppression. These results suggest that the protein phosphatase activity of PTEN likely contributes to its tumor suppressor function in a subset of MMs. This is supported by a previous study, which reported that PTEN overexpression transfected with PTEN adenoviral vectors engendered apoptotic cell death in two human MM cell lines by AKT hypophosphorylation (43).

In conclusion, our data strongly suggest that the PI3K-AKT pathway is significantly involved in MM carcinogenesis, and that elucidation of the downstream targets that dictate cellular response to this signaling pathway may have important implications for the development of future MM treatment strategies.

Acknowledgements

The authors wish to thank Dr Adi F. Gazdar for the cell lines and Mr. Nobuyuki Misawa and Ms. Mari Kizuki for their excellent technical assistance. This work was supported in part by a Special Coordination Fund for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (H18-1-3-3-1), and by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (18390245) and the Third-Term Comprehensive Control Research for Cancer, Ministry of Health, Labour and Welfare, Japan.

References

