Abstract. Previous research has shown that it may be possible to diagnose infections of human immunodeficiency virus type-1 (HIV-1) using plasma by a partial least squares regression analysis of visible and near-infrared (Vis-NIR) spectra. In this study, the features of plasma in HIV-1-infected and healthy individuals were further investigated by Vis-NIR spectroscopy using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Although the mean Vis-NIR spectra of 33 HIV-1-infected individuals and 15 healthy donors showed only slight differences, the two groups were respectively distinguished using a score plot of the first versus second or second versus third principal components, and by a Coomans plot. The PCA loadings were generally consistent with the discriminating power of the SIMCA, indicating specific changes in Vis-NIR spectra after HIV-1-infection. The specific pattern possibly indicates ROH and RNH₂, which may constitute specific features of components in HIV-1-infected plasma.

Introduction

Human immunodeficiency virus type-1 (HIV-1), a causative agent of acquired immunodeficiency syndrome (AIDS), can be transmitted by infected blood transfusion, sexual contact or intravenous drug use, or from mother to child (1). Infected individuals show a decreased number of CD4-positive T-cells (2). This decrease in CD4-positive T-cells appears to be a major cause of AIDS. In addition, inflammatory cellular compartments (e.g., macrophages) are major targets for HIV-1 infections (3). In the case of HIV dementia, the invasion of the central nervous system by HIV-infected and uninfected monocyctic cells and the subsequent release or transport of neurotoxic proteins (Tat, gp120 and cytokines) are major pathways for neuropathogenesis (4). Although several changes in plasma after HIV-1-infection have been reported, available information is limited. From 1989, before the availability of potent anti-retroviral therapy, dyslipidemia was reported in HIV-1-infected individuals (5-10). Untreated HIV-1-infected individuals show increased levels of triglycerides (11-13) and apolipoprotein B (11), decreased levels of total cholesterol (11,12), high-density lipoprotein cholesterol (HDL-C) (11-13), low-density lipoprotein cholesterol (LDL-C) (11,12) and preB-HDL (11), and increased levels and activities of lecithin cholesterol acyltransferase (11) and cholesteryl ester transfer protein (11). Elevations in total cholesterol and LDL-C may be related to an increased risk of atherosclerosis (14) and coronary artery disease (15) in HIV-1-infected individuals. Some HIV-1 protease inhibitors cause hyperlipidemia in HIV-1-positive and HIV-1-negative individuals (16-18). Elevated cytokine levels are a feature of HIV-1-infection (19), but are also observed in other viral infections. An association between triglyceride and interferon α levels has been observed in individuals with AIDS (7,20).

To date, several techniques, such as magnetic resonance spectroscopy (MRS) (21-23), nuclear magnetic resonance (NMR) spectroscopy (24) and dual-energy X-ray absorptiometry (24), have been used with limited success in an effort to determine features of HIV-1-infected plasma or other samples. Visible and near-infrared (Vis-NIR) spectroscopy is a fast multi-component assay which requires no reagents (25). Moreover, Vis-NIR spectroscopy is useful for identi-
Three consecutive Vis-NIR spectra were described previously (26). The spectral data were measured as an absorbance value [log (1/T)], where T is the transmittance at a wavelength ranging from 600 to 1100 nm.

PCR. RNA was extracted with a high pure viral RNA kit (Roche Applied Science, Indianapolis, IN). First-strand cDNA was synthesized from the RNA by Moloney murine leukemia virus reverse transcriptase (Fermentase Co., Lithuania). With the cDNA, PCR for HIV-1 was performed using primers with the DNA sequences listed in Table I. PCR was first performed with the primers PRA and IBR1, then a second-round of PCR was performed with PRB and IBR2 to produce a 1200-bp product. The first PCR consisted of a hot start for 5 min at 94°C, then cycles of denaturation for 20 sec at 94°C, annealing for 20 sec at 52°C, and extension for 2 min at 72°C, then a final extension for 7 min at 72°C. The second PCR (nested PCR) consisted of a hot start for 5 min at 94°C, then cycles of denaturation for 20 sec at 94°C, annealing for 20 sec at 55°C, and extension for 1 min at 72°C, then a final extension for 5 min at 72°C. The detection of PCR products from HIV-1 RNA was checked by DNA electrophoresis.

Materials and methods

Samples. Plasma samples from 35 HIV-1-positive individuals (male/female, 32/3), reported positive at the Counseling Behavioral Modification Center (Shiraz, Iran) and confirmed by the polymerase chain reaction (PCR) method at the HIV and Hepatitis Research Center, Shiraz University of Medical Sciences (Gerash, Iran) and samples from 15 healthy volunteer donors (male/female, 15/0) were used. The HIV-1-infected individuals had not been medicated with anti-viral agents prior to blood collection. From each subject, a venous blood sample was obtained from an antecubital vein. The blood plasma was separated from blood cells by centrifugation (2000 rpm, 10 min). All samples were diluted 20-fold with the addition of phosphate-buffered saline to a constant volume (2 ml) in a polystyrene cuvette (Sarstedt, Aktiengesellschaft, Germany) before Vis-NIR spectroscopy. This research project was approved by the Ethics Committee of Osaka University and Shiraz University of Medical Sciences, and written informed consent was obtained from all of the HIV-1-infected individuals and healthy donors.

Spectra collection. Three consecutive Vis-NIR spectra were recorded for each plasma sample at a resolution of 2 nm with a modified portable Vis-NIR spectrophotometer (NIR Gun; Japan Fantec Research Institute, Shizuoka, Japan) at 37°C as described previously (26). The spectral data were measured as an absorbance value [log (1/T)], where T is the transmittance at a wavelength ranging from 600 to 1100 nm.

Results and Discussion

Many observations suggest that specific changes occur in blood after HIV-1-infection, especially changes in cell population (2,3). However, limited information is available regarding changes in the components of plasma after HIV-1-infection. In this study, the possible differences between the plasma compo-
components of HIV-1-infected individuals and healthy subjects were examined using Vis-NIR spectroscopy. To manifest these differences, chemometric analyses such as PCA and SIMCA were applied to the Vis-NIR spectra. A total of 50 subjects were examined: 35 individuals infected with HIV-1 (male/female, 33/2) and 15 healthy donors (male/female, 14/1). Both groups comprised Iranian subjects. As raw Vis-NIR spectra showed noise and a baseline shift, it was difficult to find any significant difference between HIV-1-infected and healthy individuals. Thus, to minimize noise and baseline shifts, the Vis-NIR spectra of plasma from HIV-1-infected and healthy individuals were subjected to smoothing and SNV. Several broad peaks were found in both groups in the region of 680 and 970 nm. Very small and broad peaks were also observed at 700-800 nm, 800-900 nm and 1000-1100 nm. Next, the mean spectra of the smoothed and SNV-treated data were compared between the groups. The comparison revealed very small differences in the peaks at ~970 nm and 1000-1100 nm (Fig. 1). These results prompted us to further investigate the difference between the Vis-NIR spectra of plasma from HIV-1-infected and healthy individuals using chemometric analyses. PCA and SIMCA were applied to Vis-NIR spectra using plasma samples from the 35 HIV-1-infected and 15 healthy individuals. The results showed a relatively clear difference between plasma samples from HIV-1-infected individuals and healthy donors in terms of the PCA score plot using the first PC (PC1) versus second PC (PC2) or PC2 versus third PC (PC3) (Fig. 2). Notably, PC2 contributed to the separation of plots between HIV-1-infected and healthy individuals. Next, spectral information modeled by PCA was extracted from the corresponding loadings. PC2, which was most effective for distinguishing between the two groups, negatively peaked at 953 nm and positively peaked at 1038 nm, and was slightly high at 800-900 nm and at ~680 nm. Vis-NIR spectra were subjected to SIMCA using a Coomans plot. The Coomans plot showed the reliable separation of classes of HIV-1-infected plasma from healthy plasma. The results of the PCA and SIMCA suggest that HIV-1-infections cause specific changes in plasma and affect the Vis-NIR spectra of plasma. Furthermore, as only non-medicated individuals were included in this study, drugs did not contribute to the discrimination. The most prominent discriminating power, which represents the most useful wavelength in the discrimination of the two classes (HIV-1-infected and healthy individuals) in the SIMCA, had peaks at 665, 684, 859, 944 and 1027 nm (Fig. 3). The discriminating power was generally consistent with the PCA loadings, especially the PC2 loading.
In this study, we examined changes in the components of plasma by analyzing Vis-NIR spectra. Plasma is composed of water, proteins (mainly albumin, fibrinogen and immunoglobulin), lipids, saccharides (mainly glucose), salts and other molecules (11). Loadings in the PCA and discriminating power in the SIMCA of Vis-NIR spectra of HIV-1-infected and healthy plasma suggest that a specific spectral pattern was found in HIV-1-infected plasma. This is because the peaks for each loading in the PCA model provide information on the absorption of plasma with which to distinguish HIV-1-infected from healthy individuals. These changes may be assigned to vibrations of CH, OH and NH2 (Table II) (34), whose functional groups exist in proteins, lipids and saccharides. In addition, salts and metals are solubilized in water, and their concentrations may affect the vibration of water (970 nm) (35,36).

Recent studies using NMR, magnetic resonance imaging (MRI) and MRS have shown that components of plasma can be affected by HIV-1-infection, though information on these altered components is limited. Concerning MRI, the most prominent difference in components between HIV-1-infected and healthy plasma was a decrease in the level of N-acetylaspartate in the brain (22). MRS also showed an increase in the ratio of the glial marker myoinositol to creatine and of choline compounds to creatine in the brain (23). NMR demonstrated increased total cholesterol and triglyceride levels in plasma and increased muscular triglyceride levels in HIV-1-infected individuals (24). Dual-energy X-ray absorptiometry indicated a decrease in the fat content in the legs of HIV-1-infected individuals and an increase in the fat content in the trunk, with a similar overall fat content as that of healthy subjects (24). Taken together, these studies suggest that HIV-1-infection disrupts neuronal integrity and causes abnormal glial activation in the brain, affecting constituents related to fats in plasma and peripheral tissues. Therefore, it would be interesting to examine whether the spectral changes observed in this study are related to the above previous studies. Further detailed analyses of Vis-NIR spectra will provide significant information on the pathophysiology of HIV-1-infection.

In conclusion, Vis-NIR analysis revealed altered constituents of HIV-1-infected plasma. This approach deserves further evaluation as a potential novel index for HIV-infection. More importantly, these results suggest the presence of factors influencing plasma by following HIV-1 infection. Further elucidation of the mechanisms causing changes in plasma may contribute to our understanding of the pathophysiology of HIV-1 infection and AIDS, and may lead to an effective treatment. Finally, we would like to emphasize that approaches to the diagnosis of HIV-1 infection through skin or the use of blood are attractive. This endeavor is now ongoing.

Acknowledgements

The authors are grateful to Dr Davarpanah, Mr. Naseri and Mr. Ansari (Counseling Behavioral Modification Center, Shiraz, Iran) and to Takanori Kobayashi (Osaka University, Osaka, Japan) for technical assistance and invaluable comments. This work was partly supported by grants-in-aid from the Japan Society for the Heiwa-Nakajima Foundation, the Kieikai Research Foundation and the Japan Science and Technology Agency.

Table II. Possible assignment of peaks in the discriminating power of the SIMCA model.

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Assignment</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>665</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>859</td>
<td>C-H stretch, 3rd overtone of ArCH (aromatics) (857-890 nm)</td>
<td>(34)</td>
</tr>
<tr>
<td>944</td>
<td>O-H stretch, 2nd overtone of ROH (alcohols) (940-970 nm)</td>
<td>(34)</td>
</tr>
<tr>
<td>1027</td>
<td>N-H stretch, 2nd overtone of RNH2 (1030 nm)</td>
<td>(34)</td>
</tr>
</tbody>
</table>
References

