Cysteinyl-leukotriene\textsubscript{1} receptor is a potent target for the prevention and treatment of human urological cancer

MASAHIDE MATSUYAMA and RIKIO YOSHIMURA
Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan

Received October 1, 2009; Accepted December 28, 2009

DOI: 10.3892/mmr_00000247

Abstract. Leukotrienes (LTs) are biologically active fatty acids derived from the oxidative metabolism of arachidonic acid through the 5-lipoxygenase pathway. LTs work to contract airway smooth muscle, increase vascular permeability and mucus secretions, and attract and activate inflammatory cells in the airways of patients with asthma. Recently, it was reported that the LTD\textsubscript{4} receptor (cysteinylLT\textsubscript{4} receptor; CysLT\textsubscript{4}R) plays an important role in carcinogenesis. In this study, CysLT\textsubscript{4}R expression was examined in human urological cancer cell lines (renal cell carcinoma, bladder cancer, prostate cancer and testicular cancer) using immunohistochemistry and RT-PCR. The effect of CysLT\textsubscript{4}R antagonist on these cells was also examined using the MTT assay, Hoechst staining and flow cytometry. CysLT\textsubscript{4}R expression was significantly more extensive and intense in the malignant tissues than in normal tissues. Furthermore, CysLT\textsubscript{4}R antagonist induced a reduction in malignant cell viability through early apoptosis. These results demonstrate that CysLT\textsubscript{4}R expressed in urological cancer may play a crucial role in carcinogenesis. CysLT\textsubscript{4}R may therefore be a novel target in the treatment of urological cancer.

Introduction

Urological cancer includes renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC).

Recently, with more frequent routine medical check-ups and progress in diagnostic imaging techniques, there has been an increase in the early diagnosis of RCC. However, the cause of RCC remains unknown, and it generally does not respond well to radiotherapy and chemotherapy compared to many other types of cancer. Moreover, anti-cancer drugs such as interleukin-2 are used with only relative success, leaving surgery the only current therapeutic option. New molecular targets are therefore needed for the prevention and treatment of RCC.

The natural history of BC is not well understood, but exposure to carcinogens, including aromatic amines, is considered a major risk factor for its development. Workers exposed to aromatic amines frequently have mutated p53, a tumor-suppressor gene involved in the carcinogenesis of numerous types of cancer.

PC constitutes 32% of all cancer cases in American men, and is on the increase worldwide. Due to increased screening, PC is frequently diagnosed at a clinically localized stage, making it amenable to therapy. Nevertheless, it remains the second most common cause of cancer-related death in men. Patients generally respond to androgen-deprivation therapy, but the vast majority eventually experience disease progression and become refractory to sustained hormonal manipulation. Typically in such patients, progress is associated with a rise in serum prostate-specific antigen levels. Unfortunately, standard therapeutic options at this stage of disease progression are limited, and although chemotherapy for hormone-refractory PC patients has exhibited some success, the response is generally short-lived (1).

TC is very rare, with over 90% of cases being germ cell tumors (seminoma and non-seminoma), and the remaining percentage non-germinal tumors. The survival rate of TC patients has improved in recent years, reflecting the development and refinement of effective combination chemotherapy. However, improvements in the treatment of TC are still necessary.

Angiogenic factors play an important role in urological and other types of cancer. In recent years, the expression of angiogenic factors in solid human cancer has been widely reported (2). Growth factors secreted by tumor cells such as fibroblast growth factor and transforming growth factor have been found to increase neovascularization \textit{in vivo} and \textit{in vitro} (3).

The metabolism of arachidonic acid (AA) by either the cyclooxygenase (COX) or lipoxygenase (LOX) pathway generates eicosanoids. These have been implicated in the pathogenesis of a variety of human diseases, including cancer, and are significantly involved in cancer promotion, progression and metastasis. Studying these pathways in specimens from patients with urological cancer, we demonstrated that COX-2 and 5-LOX were overexpressed in human urological cancer tissue (4-11).

\textit{Key words:} cysteinyl-leukotriene, receptor, cysteinyl-leukotriene, receptor antagonist, renal cell carcinoma, bladder cancer, prostate cancer, testicular cancer

Correspondence to: Dr Rikio Yoshimura, Department of Urology, Osaka City University Hospital, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

E-mail: jasmin@med.osaka-cu.ac.jp

Molecular Medicine Reports 3: 245-251, 2010
Leukotriene (LT) is a member of an important group of pro-inflammatory mediators, and is synthesized by AA via the 5-LOX pathway. The activity of 5-LOX leads to the formation of unstable LTAs, which can be converted into either LTB₄ or cysteiny1LTs (LTC₄, LTD₄ and LTE₄). LTD₄ is the most important component of LTs (CysLT₁ and CysLT₂), and the CysLT receptor (CysLT,R) is specific for LTD₄ (12). Generally, CysLTs are important mediators of human bronchial asthma, and many CysLT receptor antagonists are clinically used for the treatment of human bronchial asthma. A few reports have addressed the relationship between CysLT,R and colon cancer (13,14). To date, only reports published by our team have examined the relationship between CysLT,R and urological cancer (15-18).

Our research focuses on the relationship between CysLT,R and urological cancer, and on the anti-cancer effects of the CysLT,R antagonist.

Materials and methods

Tumor specimens. Tissue specimens were obtained from the Osaka City University Hospital. Cancer tissue, non-cancer tissue, vascular endothelium and interstitial tissue from the subjects were preserved in 10% formalin, embedded in paraffin and serially sectioned onto microscope slides at a thickness of 4 µm.

Renal cell carcinoma. RCC specimens were obtained from 58 patients with RCC, and were paired with normal kidney (NK) tissue from 20 patients who underwent total nephrectomy due to ureteral cancer.

Bladder cancer. BC specimens were obtained from 90 patients with BC (including 32 who underwent total cystectomy and 58 who underwent transureteral resection of bladder tumors), and were paired with normal bladder (NB) tissue from 30 patients who underwent total prostatectomy due to prostate cancer.

Prostate cancer. PC specimens were obtained from 151 patients with PC, 20 patients with benign prostatic hyperplasia (BPH) and 20 patients with prostatic intraepithelial neoplasia (PIN) who underwent total prostatectomy or subcapsular prostatectomy, and were paired with normal prostate (NP) tissue from 20 patients who underwent total cystectomy due to bladder cancer.

Testicular cancer. TC specimens were obtained from 30 patients with TC, and were paired with normal testis (NT) tissue from 10 patients who underwent orchiectomy for prostate cancer.

Immunohistochemical staining. Immunohistochemical staining was performed with the Vectastain avidin-biotin peroxidase complex kit (Vector Laboratories, CA, USA) as previously described (19). Primary antibodies against goat CysLT,R (Abcam, Cambridge, UK) were diluted 1:50 with 1% bovine serum albumin in phosphate-buffered saline (PBS) and allowed to react with the sample for 1 h at room temperature. Similar staining with non-immune goat serum was performed as a negative control.

Immunohistochemical analysis. Stained specimens were classified into 5 grades (0-4) according to staining intensity and the number of positive cells, assessed by two observers in a blinded manner on two separate occasions using coded slides. An average score was calculated. A grade of 4 indicated that all staining was maximally intense throughout the specimen, while 0 indicated that staining was absent throughout the specimen. Micro-anatomical staining sites were also recorded. This method was performed as previously described (19). Results are presented as the mean ± SD. Data analysis was performed using ANOVA (20).

Reagents and materials. RPMI-1640 was purchased from Nissui Pharmaceutical Company (Tokyo, Japan). Fetal bovine serum (FBS) and penicillin-streptomycin mixture were from Biowhitteker (Walkersville, MD, USA). Trypsin/EDTA was from Gibco BRL (Rockville, MD, USA). Montelukast (LKT Laboratories, MN, USA) is a selective and orally active CysLT,R antagonist with demonstrated effectiveness in treating allergic asthma and allergic rhinitis in adults and children as young as 12 months of age (allergic asthma) and 6 months of age (allergic rhinitis) (21).

Cell cultures. The human RCC cell line Caki-1 and normal prostate stromal cells (NPCs) were provided by Dr Shinichi Ikemoto (Department of Urology, Osaka City University School of Medicine, Osaka, Japan). The human BC cell line T24, PC cell lines LnCaP, PC3 and DU-145, TC cell line NEC-8 and normal proximal tubular endothelial cells (PRTECs) were obtained from the Health Science Research Resources Bank (Osaka, Japan).

Cells were grown in culture flasks (Nunc, Roskilde, Denmark) in RPMI-1640 supplemented with 10% FBS, 100 U/ml of penicillin and 100 µg/ml of streptomycin in a humidified 5% CO₂ atmosphere at 37°C. The media were changed every 3 days, and the cells were separated via trypsinization using trypsin/EDTA upon reaching subconfluence.

Cell proliferative studies. Approximately 1.0x10⁴ cells placed on 8x8-mm diameter multichamber slides (Nunc, Copenhagen, Denmark) were treated with CysLT,R antagonist (12.5-100 µM) dissolved in ethanol. The final concentration of ethanol was <0.05%. Cell viability was measured on day 1 using a microplate reader with a modified 3-[4,5-dimethylthiazol-2-thiazoyl]-2,5-diphenyltetrazolium bromide (MTT) assay (WST-1 assay; Dojindo, Kumamoto, Japan). Results are presented as the percentage of control-culture conditions.

RT-PCR of CysLT,R. Total RNA was isolated from the human urological cancer cell lines using the RNAqueous kit (Ambion, Japan) and examined for the presence of the CysLT,R gene (650 bp) using sense primer 5'-CTGCTCGTCTTCGCTACTTGGA-3', and antisense primer 5'-CGGCCACCTGTTCTACAGTTGTG-3' (Takara RNA PCR™ kit; Takara Bio, Japan). The first step of PCR was carried out for 2 min at 94°C. Subsequent steps involved 35 cycles as follows: 30 sec at 94°C, 45 sec at 60°C and 60 sec at 72°C. The presence of the CysLT,R gene (650 bp) was visualized on a 0.7% agarose gel.

Flow cytometry (Annexin V and propidium iodide staining). The effect of CysLT,R antagonist on the human urological cancer cell lines was determined by dual staining with Annexin V-FITC.
Renal cell carcinoma. RCC tissues were classified as epithelium or blood vessels. CysLT1R expression was significantly more extensive and intense in all the RCC groups (G1, 1.9±0.7; G2, 2.4±1.0; G3, 2.6±0.7) compared to its expression in the NP tissues (1.3±0.6) (epithelium only). Furthermore, CysLT1R expression was higher in high-grade compared to low-grade cancer. However, CysLT1R expression presented no significant differences in blood vessel RCC and NK tissues.

Bladder cancer. BC tissues were classified as epithelium, blood vessels or stromal tissue. CysLT1R expression was significantly more extensive and intense in all the BC groups (all groups, 1.6±0.8; G1, 1.3±0.5; G2, 1.7±0.9; G3, 1.7±0.9) compared to its expression in NB tissues (0.4±0.3) (epithelium only). Furthermore, CysLT1R expression was higher in high-grade (G2 and G3) compared to low-grade (G1) cancer and in advanced-stage (pT2 or higher) (2.4±0.7) compared to early-stage (pT1 or lower) (1.1±0.5) cancer. However, CysLT1R expression in blood vessels and stromal tissue was at base levels in the BC and NB tissues (Table I).

Prostate cancer. PC tissues were classified as epithelium, blood vessels or stromal tissue. CysLT1R expression was significantly more extensive and intense in all the PC groups (all groups, 2.6±1.0; G1, 2.1±0.8; G2, 2.7±0.9; G3, 3.2±0.8) and in PIN tissues (1.8±0.9) compared to its expression in BPH (1.3±0.5) and NP (1.2±0.1) tissues (epithelium only). Furthermore, CysLT1R expression was higher in high-grade than in low-grade cancer. However, CysLT1R expression in blood vessels and stromal tissues was at base levels in the PC, PIN, BPH and NP tissues.

Statistical analysis of immunohistochemistry. Tissue samples were classified into categories and examined for the intensity of CysLT1R immunostaining.

Renal cell carcinoma. RCC tissues were classified as epithelium or blood vessels. CysLT1R expression was significantly more extensive and intense in all the RCC groups (G1, 1.9±0.7; G2, 2.4±1.0; G3, 2.6±0.7) compared to its expression in the NP tissues (1.3±0.6) (epithelium only). Furthermore, CysLT1R expression was higher in high-grade compared to low-grade cancer. However, CysLT1R expression presented no significant differences in blood vessel RCC and NK tissues.

Bladder cancer. BC tissues were classified as epithelium, blood vessels or stromal tissue. CysLT1R expression was significantly more extensive and intense in all the BC groups (all groups, 1.6±0.8; G1, 1.3±0.5; G2, 1.7±0.9; G3, 1.7±0.9) compared to its expression in NB tissues (0.4±0.3) (epithelium only). Furthermore, CysLT1R expression was higher in high-grade (G2 and G3) compared to low-grade (G1) cancer and in advanced-stage (pT2 or higher) (2.4±0.7) compared to early-stage (pT1 or lower) (1.1±0.5) cancer. However, CysLT1R expression in blood vessels and stromal tissue was at base levels in the BC and NB tissues (Table I).

Prostate cancer. PC tissues were classified as epithelium, blood vessels or stromal tissue. CysLT1R expression was significantly more extensive and intense in all the PC groups (all groups, 2.6±1.0; G1, 2.1±0.8; G2, 2.7±0.9; G3, 3.2±0.8) and in PIN tissues (1.8±0.9) compared to its expression in BPH (1.3±0.5) and NP (1.2±0.1) tissues (epithelium only). Furthermore, CysLT1R expression was higher in high-grade than in low-grade cancer. However, CysLT1R expression in blood vessels and stromal tissues was at base levels in the PC, PIN, BPH and NP tissues.
MaTSuyaMa and yoshIMura: cySTeinyl-leukoTriene recePtor in uroloGical cancers

Table I. Statistical analysis of CysLT, R expression.

<table>
<thead>
<tr>
<th></th>
<th>Epithelium</th>
<th>Blood vessel</th>
<th>Stromal tissue</th>
<th>Mean age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder cancer</td>
<td>1.6±0.8</td>
<td>0.4±0.3</td>
<td>0.3±0.2</td>
<td>68.1±7.5</td>
</tr>
<tr>
<td>Grade 1</td>
<td>1.3±0.8</td>
<td>0.4±0.3</td>
<td>0.3±0.2</td>
<td>68.8±8.5</td>
</tr>
<tr>
<td>Grade 2</td>
<td>1.7±0.9</td>
<td>0.3±0.3</td>
<td>0.3±0.3</td>
<td>67.6±6.7</td>
</tr>
<tr>
<td>Grade 3</td>
<td>1.7±0.9</td>
<td>0.4±0.3</td>
<td>0.3±0.2</td>
<td>67.9±7.4</td>
</tr>
<tr>
<td>Early-stage</td>
<td>1.1±0.5</td>
<td>0.3±0.2</td>
<td>0.3±0.2</td>
<td>68.0±7.3</td>
</tr>
<tr>
<td>Advanced-stage</td>
<td>2.4±0.7</td>
<td>0.4±0.4</td>
<td>0.3±0.2</td>
<td>68.3±7.8</td>
</tr>
<tr>
<td>Normal bladder</td>
<td>0.4±0.3</td>
<td>0.3±0.2</td>
<td>0.3±0.3</td>
<td>65.8±7.2</td>
</tr>
</tbody>
</table>

Classification of the coded sections by two observers in a blinded manner using a scale of 0-4. 0, no staining; 4, maximum intensity. Statistical analysis was performed using ANOVA (p-value). In the epithelium alone, CysLT, R expression was significantly more extensive and intense in bladder cancer (BC) tissue compared to normal bladder (NB) tissue. Furthermore, CysLT, R expression was higher in high-grade (grades 2 and 3) compared to low-grade (grade 1) cancer (p<0.05), and was higher in advanced-stage (pT2 or higher) compared to early-stage (pT1 or lower) cancer. However, CysLT, R expression in blood vessels and stromal tissue was at base levels in the BC and NB tissues (p<0.01).

Bladder cancer. The BC cell line expressed CysLT, R mRNA bands. These were down-regulated following treatment with 100 µM CysLT, R antagonist (Fig. 2).

Prostate cancer. The PC cell lines expressed CysLT, R mRNA bands. These were down-regulated following treatment with 100 µM CysLT, R antagonist.

Testicular cancer. The TC cell line expressed CysLT, R mRNA bands. These were down-regulated following treatment with 100 µM CysLT, R antagonist.

MTT assay. Using the MTT assay, similar results were obtained for all the cells lines.

Renal cell carcinoma. In the RCC cell line, CysLT, R antagonist induced a reduction in cell viability with a half-maximal concentration of growth inhibition in the range of 12.5-100 µM, while having no effect on PRTEC proliferation (Table II).

Bladder cancer. In the BC cell line, CysLT, R antagonist induced a reduction in cell viability with a half-maximal

Table II. Effects of CysLT, R antagonist on the viability of human urological cancer cells.

<table>
<thead>
<tr>
<th>CysLT, R antagonist</th>
<th>12.5 µM</th>
<th>25 µM</th>
<th>50 µM</th>
<th>100 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC cell line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caki-1</td>
<td>103.8</td>
<td>112.6</td>
<td>118.4</td>
<td>15.1</td>
</tr>
<tr>
<td>BT cell line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24</td>
<td>101.3</td>
<td>102.6</td>
<td>81.2</td>
<td>18.0</td>
</tr>
<tr>
<td>PC cell lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNCaP</td>
<td>102.4</td>
<td>101.8</td>
<td>26.9</td>
<td>6.8</td>
</tr>
<tr>
<td>PC3</td>
<td>103.3</td>
<td>100.2</td>
<td>102.6</td>
<td>19.5</td>
</tr>
<tr>
<td>DU-145</td>
<td>117.4</td>
<td>47.2</td>
<td>20.7</td>
<td>7.5</td>
</tr>
<tr>
<td>TC cell line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEC-8</td>
<td>105.4</td>
<td>112.8</td>
<td>120.4</td>
<td>21.1</td>
</tr>
<tr>
<td>Normal proximal tubular endothelial cells</td>
<td>98.2</td>
<td>93.6</td>
<td>101.7</td>
<td>105.3</td>
</tr>
<tr>
<td>Normal prostate stromal cells</td>
<td>87.5</td>
<td>92.7</td>
<td>92.9</td>
<td>97.1</td>
</tr>
</tbody>
</table>

Dose-response analysis of viability in human urological cancer cells treated with CysLT, R antagonist (12.5-100 µM), measured using the MTT assay and expressed as the percentage of control culture conditions.
concentration of growth inhibition in the range of 12.5-100 µM (Table II).

Prostate cancer. In the PC cell lines, CysLT₁R antagonist induced a reduction in cell viability with a half-maximal concentration of growth inhibition in the range of 12.5-100 µM, while having no effect on NPC proliferation (Table II).

Testicular cancer. In the TC cell line, CysLT₁R antagonist induced a reduction in cell viability with a half-maximal concentration of growth inhibition in the range of 12.5-100 µM (Table II).

Flow cytometry. Using flow cytometry, similar results were obtained for all the cell lines.

Renal cell carcinoma. In the RCC cell line, 100 µM CysLT₁R antagonist induced early apoptosis, not late apoptosis or necrosis and DNA fragmentation. FITC-Annexin V/PI flow cytometry diagrams and typical flow cytometry analysis histograms are presented in Figs. 3 and 4.

Bladder cancer. In the BC cell line, 100 µM CysLT₁R antagonist induced early apoptosis, not late apoptosis or necrosis and DNA fragmentation.
Prostate cancer. In the PC cell lines, 100 µM CysLT₁R antagonist induced early apoptosis, not late apoptosis or necrosis and DNA fragmentation.

Testicular cancer. In the TC cell line, 100 µM CysLT₁R antagonist induced early apoptosis, not late apoptosis or necrosis and DNA fragmentation.

Hoechst staining. Using Hoechst staining, similar cellular changes typical of apoptosis were observed in all the cell lines. Without CysLT₁R antagonist treatment, the cell lines maintained normal chromatin patterns and cell size.

Renal cell carcinoma. The RCC cell line treated with 100 µM CysLT₁R antagonist showed significant chromatin condensation, cellular shrinkage, small membrane-bound bodies (apoptotic bodies) and cytoplasmic condensation.

Bladder cancer. The BC cell line treated with 100 µM CysLT₁R antagonist showed significant chromatin condensation, cellular shrinkage, apoptotic bodies and cytoplasmic condensation.

Prostate cancer. The PC cell lines treated with 100 µM CysLT₁R antagonist showed significant chromatin condensation, cellular shrinkage, apoptotic bodies and cytoplasmic condensation (Fig. 5).

Testicular cancer. The TC cell line treated with 100 µM CysLT₁R antagonist showed significant chromatin condensation, cellular shrinkage, apoptotic bodies and cytoplasmic condensation.

Discussion

Leukotrienes (LTs) are biologically active fatty acids derived from the oxidative metabolism of arachidonic acid (AA) (22,23) through the 5-LOX pathway. The activity of 5-LOX leads to the formation of unstable LTA₄, which can be converted into either LTB₄ or CysLTs (LTC₄, LTD₄ and LTE₄). CysLTs are components of a slow-reacting substance of anaphylaxis. LTD₄ plays the most important role in CysLTs (CysLT₁ and CysLT₂), and CysLT₁ is specific for LTD₂. LTs are potent biochemical mediators that are released from mast cells, eosinophils and basophils. They work to contract airway smooth muscle, increase vascular permeability and mucus secretions, and attract and activate inflammatory cells in the airways of patients with asthma (24). The action of LTs can be blocked through either one of two specific mechanisms: i) the inhibition of LT production, or ii) the antagonism of LT binding to cellular receptors.

By contrast, the 5-LOX inhibitor inhibits LT formation (in particular LTB₄, LTC₄, LTD₄ and LTE₄). Our previous studies found that 5-LOX was overexpressed in urological cancer, and that the 5-LOX inhibitor may attenuate the growth of human urological cancer and induce apoptosis through the AA pathway (8-11,25). On the basis of these findings, we examined whether or not CysLT₁R is expressed in human urological cancer tissue, and whether or not it is possible to prevent urological cancer cell growth by means of CysLT₁R antagonist.

In this study, immunohistochemistry revealed strong expression of CysLT₁R in urological cancer tissue. The extent and intensity of CysLT₁R expression were greater in the urological cancer tissue than in normal tissue. In RCC and PC, CysLT₁R expression was higher in high-grade compared to low-grade cancer. In the BC cell line, CysLT₁R expression was higher in high-grade and advanced-stage cancer compared to low-grade and early-stage cancer.

Limited data regarding CysLT₁R and urological cancer have been reported in previous studies. We expect that further research will be undertaken. Theories concerning the correlation between cancer grade or stage and CysLT₁R expression are still controversial. In the near future, this may be elucidated through competitive PCR.

Using RT-PCR, we found that CysLT₁R was expressed in urological cancer cell lines, and that this expression was down-regulated by 100 µM CysLT₁R antagonist.

Next, using the MTT assay, we demonstrated that the co-incubation of urological cancer cells with CysLT₁R antagonist arrested the growth of urological cancer cells and potently inhibited cell growth in a dose-dependent manner. These results indicate that CysLT₁R is essential for the cell growth of urological cancer cells.

The mechanism by which CysLT₁R antagonist suppresses growth in urological cancer cells requires clarification. To address this issue, we examined whether or not apoptosis was involved in growth suppression in the urological cancer cells. CysLT₁R antagonist (100 µM) strongly induced early apoptosis in urological cancer according to the results of flow cytometry and Hoechst staining. Thus, apoptosis may be involved in the mechanisms by which CysLT₁R antagonist prevents cell growth in urological cancer cells. These results...
provide the first confirmation that CysLT₁R antagonist inhibits urological cancer cell growth through apoptosis.

In a study on CysLT₁R and colon cancer, Ohd et al reported that CysLT₁R was overexpressed in human colorectal cancer and was significantly correlated to COX-2 and 5-LOX (13). The expression of CysLT₁R was higher in high-grade and early-stage cancer, suggesting typical differences in colon cancer (13). Furthermore, survival time was slightly shorter in patients with high-intensity CysLT₁R staining than in those with low-intensity staining (14). These reports suggest that there are various relationships between CysLT₁R and other types of cancer, and that CysLT₁R antagonist can prevent cell growth in other types of cancer besides urological cancer.

These findings suggest that CysLT₁R expression is strong in urological cancer, though the anti-cancer effect of CysLT₁R antagonist is weak in urological cancer patients in a single administration at a clinical dose. CysLT₁R antagonist is therefore suitable for chemopreventive therapy.

In conclusion, there is no question that CysLT₁R is involved in the initiation and promotion of urological cancer. It may be possible to apply CysLT₁R antagonist as an anti-cancer drug in the area of cancer prevention. However, CysLT₁R antagonist at a clinical dose is not expected to have a suppressive effect on the cancer. Though the clinical application of CysLT₁R antagonist requires further research and consideration, targeting CysLT₁R may provide a novel strategy for the prevention and treatment of human urological cancer.

References