Effect of intratumoral injection of mutant type p27Kip1 followed by \textit{in vivo} electroporation on radiotherapy-resistant human oral tongue cancer xenografts

SUPRIATNO1,2, SARTARI ENTIN YULETNAWATI3 and ANTONIUS WIDIASTO2

1Department of Oral Medicine, and 2Integrated Research Laboratory, Faculty of Dentistry, Gadjah Mada University, Yogyakarta 55281; 3Private Dental Clinic, Solo, Central Java, Indonesia

Received June 25, 2010; Accepted October 18, 2010

DOI: 10.3892/mmr.2010.385

Abstract. Oral tongue cancer is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. Treatment options for this cancer are limited. However, gene therapy has attracted keen interest as a new strategy for refractory cancer. The aim of this study was to examine the efficiency of transfection of the exogenous p27Kip1 gene by electroporation and the antitumor activity of p27Kip1 gene therapy in radiotherapy-resistant human oral tongue cancer xenografts using mutant type (mt) pcDNA3.1-p27Kip1, followed by \textit{in vivo} electroporation. Evaluation of the \textit{in vivo} gene transfer method was carried out by transfecting the enhanced green fluorescence protein (EGFP) gene into xenografts by electroporation. The efficiency of p27Kip1 gene transfection was confirmed by Western blot analysis. Estimation of the reduction in size of the B88 and B88-R-Rad tumors in mice after electroporation with the p27Kip1 mt gene was examined by tumorigenesis assay. The results revealed that the efficiency of transfection of B88-EGFP and B88-R-Rad-EGFP was 58.1 and 27.4\%, respectively. The growth of tumors was markedly suppressed by p27Kip1 mt gene transfection by electroporation on B88-p27Kip1 mt and B88-R-Rad-p27Kip1 mt. Furthermore, up-regulation of p27Kip1 protein was detected in B88-p27Kip1 mt and B88-R-Rad-p27Kip1 mt, while inhibition of tumor size was highly increased in B88-p27Kip1 mt compared to B88-R-Rad-p27Kip1 mt. These results indicate that the intratumoral injection of pcDNA3.1-p27Kip1 mt with electroporation exhibited a high potential antitumor activity in human oral tongue cancer cell B88 xenografts, and a slight increase in antitumor activity in the radiotherapy-resistant human oral tongue cancer cell B88-R-Rad xenografts.

Introduction

Oral tongue cancer is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. This cancer frequently shows local recurrence after initial treatment, probably due to microinvasion and/or micrometastasis of tumor cells at the primary site (1). Despite advances in surgery, radiotherapy and chemotherapy, the survival of patients with oral tongue cancer has not significantly improved over the past several decades. Treatment options for recurrent or refractory oral cancers are limited (2). Furthermore, the ratio of mortality to incidence in 1980 and 1990 was 0.48 and 0.47, respectively (3), and the prognosis has not changed during the past 10 years. However, as a new strategy for refractory cancer, gene therapy has attracted keen interest.

Electroporation, also termed electric pulses or electrogene therapy, has been developed to achieve a higher efficiency of \textit{in vitro} gene or drug transfer (4,5). This system provides markedly higher transfer efficiency compared to other non-viral transfer systems, including cationic liposomes (6). Electric pulse has been applied to \textit{in vivo} drug transfer for cancer treatment, and a clinical trial has been initiated (7). Electric pulse has become increasingly popular as an effective technique for introducing foreign DNA into various types of mammalian cells (8,9). This technique has been used to investigate gene regulation (10) and has been demonstrated to be highly useful in transfecting human hematopoietic stem cells for gene therapy (11). However, transfection efficiency in mammalian cells using \textit{in vivo} electroporation has received little attention (12) and efficiency is usually quite low, typically approximately 0.01-1\% (13). As a physical method, electroporation has few biological side effects and is free of chemical toxicity (10).

Many methods and techniques for \textit{in vivo} gene transfer have been developed, and some have been applied in clinical trials (4). Nonviral gene transfer, ‘naked’ plasmid DNA is an ideal system for gene transfer. A plasmid-mediated method would be economical and easy, as use of this system obviates the necessity to construct viral vectors, establish clones

Correspondence to: Dr Supriatno, Department of Oral Medicine, Faculty of Dentistry, Gadjah Mada University, Jalan Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia
E-mail: pridentagama_oncolog@yahoo.com

Key words: oral tongue cancer, radiotherapy-resistant, p27Kip1 mutant type, electroporation
of producer cells, and assess viral titers and the presence of replication-competent helper virus, which has been known to activate passive oncogenes. The transfer procedure could be easily repeated, as ‘naked’ plasmid DNA has little antigenicity to the host body (14).

p27kip1 is a universal cyclin-dependent kinase inhibitor that directly inhibits the enzymatic activity of cyclin-CDK complexes, resulting in cell cycle arrest at G\textsubscript{1} (15). p27kip1 is an important prognostic factor in various types of malignancies. Recently, decreased expression of p27kip1 has been frequently detected in human cancer (16-18). In addition, loss of p27kip1 has been associated with disease progression and an unfavorable outcome in several types of malignancy (19). Furthermore, mice lacking the p27kip1 gene showed an increase in body weight, thymic hypertrophy and hyperplasia of pituitary intermediate lobe adenocorticotropic hormone cells, adrenal glands and gonadal organs (20). Malignant human oral cancer cell transfection with the p27kip1 gene also leads to inhibition of proliferation, invasion and metastasis (21,22). A low level of p27kip1 expression was associated with poor prognosis and high malignancy of human colon (23), breast (16), gastric (25), lung (26), prostate (27), ovarian (28), thyroid (29) and lymphatic (30) cancers. Disruption of the cell cycle regulatory activity of p27kip1 is related to the aggressiveness of cancer cells (31).

Mutation of the p27kip1 gene seems to be uncommon in human malignancies (32). It has been demonstrated that p27kip1 is poly-ubiquitinated both in vitro and in vivo, and that p27kip1 ubiquitination requires phosphorylation on threonine residue 187 (Thr 187) both in vitro and in vivo (33). We previously constructed an expression vector to express the mutant type p27kip1 gene (pcDNA3.1-p27kip1mt) with a specific primer (p27kip1-SQP: 5'-ATGTCAAAACGTGCGGAGTGTC-3') for human p27kip1 cDNA. The DNA sequence was determined by the dideoxy chain termination method, using fluorescence-labeled primers and a ThermosequenaseTM Cycle sequencing kit (Amersham Pharmacia Biotech, Sweden). Electrophoresis and scanning were performed with a Shimadzu DSQ-500 DNA sequencer (Shimadzu, Kyoto, Japan).

Tumorigenesis in mice and electrotransfection. B88 and B88-R-Rad cells were collected and suspended in saline solution at 1x106 cells per 0.1 ml. The cell suspension (0.1 ml) was injected subcutaneously into the flank area of each male Wistar mouse with a BALB/cA Jcl-nu genetic background (LPPT-UGM, Yogyakarta, Indonesia). A pair of 1 cm diameter disc-shaped electrodes (pinsettes-type electrode 449-10 PRG; Meiwa Shoji, Tokyo, Japan) was used to nip the tumor nodule through the skin. A series of eight electrical pulses with a pulse length of 1 msec were delivered with a standard square wave electroporator BTX T820 (BTX, Inc., San Diego, CA). A voltage of 80 V/1.0 cm diameter of the xenograft was used. Subsequently, an appropriate pulse length and frequency of pulses was delivered as described in previous reports (8,9). Immediately after electrical pulsing, 20 \mu g of plasmid cDNA or pcDNA3.1-p27kip1mt dissolved in 50 \mu l of Tris-EDTA buffer was directly injected into the tumor nodule. The procedure of electroporation and injection was performed a total of three times at 3-day intervals. Tumor volume and body weight were measured every 3 days from the time electroporation started until the mice were sacrificed. The tumor volume (V) was determined by measuring the length (L) and width (W) of the tumors, and was calculated using the formula: V = 0.4 x L x W2 (21).

Detection of reporter gene expression in vivo. Detection of reporter gene expression in vivo in pEGFP-C3 vector (BD Bioscience Clontech)-injected tumors (B88 and B88-R-Rad) was carried out at 48 h by sectioning and mounting the tumors in PBS for immediate microscopy. A Xenon arc lamp and an FITC filter were used on a Zeiss Axioskop microscope to visualize enhanced green fluorescence protein (EGFP). Images were captured with a color CCD camera and frame-grabbing equipment at an identical magnification, light intensity and
amplification for each sample pair of tumors from the electroporated and non-electroporated animals, respectively.

Western blot analysis. Cell lysates were prepared from the xenograft B88 and B88-R-Rad tumor tissue. Briefly, samples containing equal amounts of protein (50 µg) were electrophoresed on a SDS-polyacrylamide gel and transferred to a nitrocellulose filter (PVDF membrane; BioRad, Hercules, CA, USA). The filters were blocked in TBS containing 5% nonfat milk powder at 37°C for 1 h, and then incubated with a 1:500 dilution of monoclonal antibody against the p27 protein (clone 1B4, monoclonal antibody; Novoceastra Laboratories, New Castle, UK) as the primary antibody using the Amersham ECL kit (Amersham Pharmacia Biotech). Anti-α-tubulin monoclonal antibody (Zymed Laboratories, San Francisco, CA, USA) was used for normalization of the Western blot analysis.

Statistical analysis. Statistical differences between the means for the different groups were evaluated with Stat View 4.5 (version 5.0J, SAS Institute Inc, Cary, NC, USA) using one-way ANOVA and a t-test. The significance level was set at 5% for each analysis.

Ethics. This study was approved by the Ethics Committee of the Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia (no. KE/FK/166/EC/2008).

Results

Examination of cell resistance using MTT and clonogenic assays. The radiotherapy resistance of the B88-R-Rad cells was examined by the MTT assay. Relative cell number was evaluated by comparing the absorbance in each cell. No significant differences in cell number were noted between the B88-R-Rad-no radiation and B88-R-Rad-2 Gy cells. However, the cell growth of B88 cells treated with X-ray irradiation (2 Gy) was significantly suppressed compared to that of the non-treated B88 cells (P<0.05) (Fig. 1). Furthermore, the growth of cell cloning of the B88 cells treated with 2 Gy X-ray irradiation was markedly suppressed as compared to that of the non-treated B88 cells. Conversely, the growth of the B88-R-Rad-irradiated and B88-R-Rad-no irradiated cells was approximately the same in all of the observed cells (Fig. 2).

Expression of p27\(^{Kip1}\) protein in the xenografts. To evaluate the efficiency of p27\(^{Kip1}\) gene transfection, the expression of p27\(^{Kip1}\) protein by Western blotting was evaluated. As shown in Fig. 3, up-regulation of p27\(^{Kip1}\) protein in the B88-pcDNA3.1-p27\(^{Kip1}\) mt- and B88-R-Rad-pcDNA3.1-p27\(^{Kip1}\) mt-injected tumors was detected and compared with that in the pcDNA3.1 empty vector-injected tumors. Expression of p27\(^{Kip1}\) protein was slightly increased in the B88-pcDNA3.1-p27\(^{Kip1}\) mt-injected tumors compared to that in the B88-R-Rad-pcDNA3.1-p27\(^{Kip1}\) mt-injected tumors. Therefore, the expression of α-tubulin as an internal control was approximately the same in each tumor observed.

Detection of transgene expression in the xenografts. Detection of reporter gene EGFP after plasmid injection and electroporation in the tumor tissues was conducted in fresh tissue sections by microscopic fluorescence imaging. Few EGFP-positive cells were noted in the B88-no treated (1.2±0.3%) and B88-R-Rad-no treated (1.8±0.2%) cells when only naked DNA without consecutive electric pulse was injected. The combination treatment with electric pulse resulted in consistently efficient transduction of a higher number of B88-treated (58.1±5.2%) and B88-R-Rad-treated (27.4±4.8%) cells with the EGFP reporter gene (Fig. 4).

Analysis of tumorigenesis. Analysis of tumorigenesis was conducted in the flank area of the Wistar mice with the BALB/cJcl-nu genetic background. As shown in Fig. 5, the mean relative tumor volume of the B88-p27\(^{Kip1}\) mt and B88-R-Rad-p27\(^{Kip1}\) mt xenografts after electric pulse was significantly decreased at day 12 and 15 compared to the B88-neo or B88-R-Rad-neo xenografts, respectively (P<0.05). However, the antitumor activity of p27\(^{Kip1}\) mt was slightly stronger in the B88 tumor nodules than in the B88-R-Rad tumor nodules (P<0.05). Notably, during the experimental period, no decrease in body weight was observed in any of the treatment groups, and no burning of the skin region was noted.

Discussion

It is currently believed that the loss of normal cell cycle control plays a crucial role in the genesis of most types of cancer. The cell cycle is modulated by the interaction of multiple cell cycle molecules, including cyclins, cyclin-activating kinase (CAK), CDK and cyclin-dependent kinases inhibitors (CDI). In addition to its role as a CDI, p27\(^{Kip1}\) is a putative tumor suppressor gene (20), a regulator of drug resistance in solid tumors (35), and a promoter of apoptosis (24). Moreover, p27\(^{Kip1}\) acts as a safeguard against inflammatory injury (36) and plays a role in cell differentiation (37). It has been reported that mutant type p27\(^{Kip1}\) displayed higher antitumor effects than the wild-type in lung cancer cells. In p27 mt, Thr-187/Pro-188 was mutated into Met-187/Ile-188 to prevent the phosphorylation of Thr-187, which is the main mechanism of p27 degradation (38). Similarly, the growth inhibitory effect of wild-type
p27kip1 gene transfer on a head and neck carcinoma cell line (39) and the growth inhibitory effect of mutant p27kip1 gene transfer on head and neck cancer cells, including oral cancer cell lines, have been reported (34, 40).

In the present study, the efficiency of exogenous p27kip1 gene transfection by local electric pulse and the antitumor activity of the p27kip1 gene in radiotherapy-resistant human oral tongue cancer xenografts determined using the pcDNA3.1-p27kip1 mt gene followed by electroporation were evaluated. An expression vector containing sense-oriented human p27kip1 cDNA with pcDNA3.1 was constructed. B88 and B88-R-Rad cells were transfected with the sense expression vector to regulate the expression of the p27 gene. MTT assay analysis indicated no difference in growth between the B88-R-Rad-no radiation and B88-R-Rad 2 Gy tumors. However, the growth of B88 cells treated with 2 Gy irradiation was significantly suppressed as compared to that of the non-treated B88 cells (Fig. 1). These data suggest that the B88-R-Rad cell line was markedly resistant to radiotherapy. Furthermore, a clonogenic assay was evaluated. The growth of cell cloning of the B88 cells treated with 2 Gy radiation was markedly suppressed as compared to that of the non-treated B88 cells. Conversely, the growth of B88-R-Rad-radiated and B88-R-Rad-no radiated cells was approximately the same in all of the observed cells (Fig. 2). Khaled et al (42) reported that overexpression of cyclin B1 in head and neck cancer cells is capable of inducing resistance to radiotherapy (RT), and that cyclin B1 may serve as an indicator of the risk of locoregional recurrence and metastasis in patients with HNSCC receiving RT. Moreover, Western blot analysis demonstrated the overexpres-
In conclusion, intratumoral injection of pcDNA3.1-p27Kip1 mt followed by electroporation exhibits high potential antitumor activity in human oral tongue cancer cell B88 xenografts, while this procedure exhibits a slightly increased antitumor activity in radiotherapy-resistant human oral tongue cancer cell B88-R-Rad xenografts.

Acknowledgements

This research was supported by a Hibah Kompetensi DIKTI grant no. 238/SP2H/PP/DP2M/V-2008-2010 from the National Education Department, Republic of Indonesia. Appreciation and thanks is also due to Dr Koji Harada of Tokushima University and to all the staff members at the Department of Oral Medicine, Faculty of Dentistry, Gadjah Mada University, Yogyakarta, Indonesia.

References

