Induction of G₂/M arrest and apoptosis by sulforaphane in human osteosarcoma U2-OS cells

MI-RAN KIM¹, LU ZHOU¹, BYUNG-HYUN PARK² and JUNG RYUL KIM¹

Departments of ¹Orthopaedic Surgery and ²Biochemistry, Medical School and Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea

Received March 23, 2011; Accepted June 27, 2011

DOI: 10.3892/mmr.2011.520

Abstract. Sulforaphane is one of the most abundant isothiocyanates found in certain cruciferous vegetables, particularly broccoli. To date, sulforaphane has gained attention as a chemopreventive compound. The mechanism responsible for the anticancer effects of sulforaphane in osteosarcoma, however, is not clear. In this study, we demonstrate an anti-proliferative mechanism of sulforaphane in human osteosarcoma cells. The treatment of cells with sulforaphane resulted in a concentration- and time-dependent inhibition of growth and G₂/M phase arrest of the cell cycle. This effect was associated with a decrease in protein expression of cyclin A and B1 and their activating partners, cyclin-dependent kinases (CDKs) 1 and 2, with concomitant up-regulation of p21, a CDK inhibitor. Sulforaphane treatment also resulted in apoptosis as evidenced by an increase in annexin V/propidium iodide (V⁺/PI) cells, the cleavage of 116-kDa poly (ADP-ribose) polymerase (PARP) and ICAD and oligonucleosomal DNA fragmentation. Taken together, these findings indicate that the molecular mechanisms underlying sulforaphane-mediated growth inhibition in U2-OS cells may be the modulation of the cell cycle machinery and the induction of apoptosis.

Introduction

Numerous anti-proliferative agents interfere with the cell cycle machinery (1). Cell cycle transitions are largely governed by a family of cyclin-dependent kinases (CDKs). The activities of CDKs are regulated by various factors including: (i) levels of various CDKs, (ii) levels of cyclins that interact with CDKs, and (iii) levels of CDK inhibitory proteins (CDKIs). Alterations in the formation of CDK/cyclin complexes could lead to increased cell growth and proliferation, decreased cell growth, and proliferation followed by differentiation and/or cell death by apoptosis (1). The formation of active complexes of CDK1 or 2 with cyclin A and/or B is required for transition from the G₂ to the M phase of the cell cycle. Cyclin B1 is a key component of the G₂ to M phase transition (2). Cyclin B1 binds to CDK2 at the beginning of the G₂ phase, forming an activated cyclin B1/CDK2 complex. The activated cyclin B1/CDK2 complex then phosphorylates its downstream substrates that control the G₂ to M transition and promotes mitotic cell division (3). By contrast, CDK1 plays a crucial role in controlling the cell cycle by coordinating internal and external signals that impede proliferation at several key checkpoints (4). Among the CDKIs, p21/WAF1/CIP1 is a significant mediator of cell cycle arrest. Several studies have demonstrated that levels of p21 may be critical for determining the threshold kinase activity of various cyclin/CDK complexes, suggesting that finite levels of p21 may be critical in the regulation of cell growth (5,6).

Apoptosis plays a role in the maintenance of tissue homeostasis. Apoptosis removes damaged cells, and therefore, impaired apoptosis is thought to contribute to the development of cancer (7). Apoptosis is a physiological marker of cell death and is characterized by chromatin condensation, membrane blebbing, cell shrinkage and DNA fragmentation (8). The process is tightly regulated by the balance of pro- and anti-apoptotic proteins in the cell, which include members of the Bcl-2 family and inhibitors of apoptosis (9). Apoptosis also results from the coordinated actions of several caspase enzymes (7,9). Caspase cleaves many substrate proteins, including poly (ADP-ribose) polymerase (PARP) and structural proteins, such as actin, fodrin or lamin to generate the characteristic apoptotic morphology (10).

Advances in the understanding of the molecular events that drive tumor progression have provided an opportunity to identify effective therapeutic regimens for the treatment and management of malignant cancers. Sulforaphane is one of the most abundant isothiocyanates in certain cruciferous vegetables, particularly broccoli (11). It has been shown that sulforaphane protects against ischemia reperfusion injury (12), diabetes (13) and several major cancers (14). Initial studies on human colon and prostate cancer cells have demonstrated that sulforaphane exerts anticancer effects via the inhibition of histone deacetylase activity (15). The studies by Matsui et al have demonstrated that sulforaphane has anti-proliferative properties towards osteosarcoma cells via death receptor 5 expression and cell cycle arrest (16,17). This study aimed to...
further investigate the detailed mechanism of sulforaphane on
cell cycle arrest and apoptosis in human osteosarcoma cells.
The data demonstrate that sulforaphane induces apoptosis
and cell cycle arrest at the G2/M phase through a coordinated
mechanism involving the down-regulation of CDKs and
cyclins and the induction of p21.

Materials and methods

Cell culture and reagents. Human osteosarcoma cell lines
(U2-OS and MG63) were purchased from the American
Type Culture Collection (ATCC, Rockville, MD, USA) and
grown at 37°C under a humidified 5% CO2 atmosphere
in Dulbecco's modified Eagle's medium (DMEM) supplemented
with 10% fetal bovine serum, 2 mM glutamine, 100 units/ml
penicillin, 100 µg/ml streptomycin and 2.5 µg/ml amphotericin
B. Sulforaphane was purchased from LKT Laboratories
(St. Paul, MN, USA). All reagents were purchased from Sigma
(St. Louis, MO, USA) unless otherwise noted.

MTT assay for cell proliferation. The viability of cultured cells
was determined by assaying the reduction of 3-(4,5-dimethy-
lthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to
formazan. Cells were seeded in 96-well plates. Following
treatment, the cells were washed twice with phosphate-buff-
ered saline (PBS) and MTT (100 µg/100 µl PBS) was added
to each well. The plates were then incubated at 37°C for 1 h and
then DMSO (100 µl) was added to each well to dissolve the
formazan crystals. Absorbance was measured at 570 nm with
a SpectraMax Plus model (Molecular Devices, Sunnyvale,
CA, USA).

Cell cycle analysis. Cells (1x10⁴) were incubated with various
concentrations of sulforaphane for 24 h, washed with PBS and
fixed in 70% ethanol overnight at 4°C. The following day, cells
were washed with PBS containing 0.1% BSA and incubated
with 5 mg/ml of RNase A (DNase free) and 50 mg/ml prop-
idium iodide (PI) for 90 min at 4°C. The percentages of cells in
different phases of the cell cycle were measured with a FACStar
flow cytometer (Becton-Dickinson, San Jose, CA, USA).

Annexin V staining. Apoptosis was determined by staining
cells with Alexa Fluor 488 annexin V (Invitrogen, Carlsbad,
CA, USA). Cells (5x10⁵) were incubated with various
concentrations of sulforaphane for 48 h, washed twice with
cold PBS and resuspended in 500 µl binding buffer (10 mM
HEPES/NaOH, pH 7.4, 140 mM NaCl and 2.5 mM CaCl2).
The following day, cells were incubated with 100 µg/ml PI,
stained with annexin V Alexa Fluor 488, and analyzed using the
FACSCalibur flow cytometer (Becton-Dickinson).

Detection of DNA fragmentation by gel electrophoresis. Cell
pellets (5x10⁶) were resuspended in 500 µl lysis buffer (0.5%
Triton X-100, 10 mM EDTA and 10 mM Tris-HCl, pH 8.0),
incubated at room temperature for 15 min and centrifuged
at 16,000 x g for 10 min. DNA was then extracted twice with
phenol/chloroform (1:1), precipitated with ethanol and resus-
pended in Tris/EDTA buffer (10 mM Tris-HCl, pH 8.0 and
1 mM EDTA). DNA was analyzed following separation by gel
electrophoresis (2% agarose).

Western blot analysis. Cells were homogenized in 100 µl
ice-cold lysis buffer containing 20 mM HEPES, pH 7.2,
1% Triton X-100, 10% glycerol, 1 mM phenylmethylsul-
fonyl fluoride (PMSF), 10 µg/ml leupeptin and 10 µg/ml
aprotinin. Homogenates containing 20 µg protein were
separated by SDS-PAGE using a 10% resolving gel with a
3% acrylamide stacking gel. Proteins were transferred from
the polyacrylamide gel to nitrocellulose membranes, blocked
with 2% bovine serum albumin, and then probed overnight
with primary antibodies for PARP, ICAD, cyclins A and B1,
CDKs 1 and 2 and p21 (all from Santa Cruz Biotechnology,
Santa Cruz, CA, USA). Horseradish peroxidase-conjugated
IgG (Zymed, South San Francisco, CA, USA) was used as a
secondary antibody and the protein expression level was
determined by analyzing the signals captured on the nitro-
cellulose membranes using a ChemiDoc Imaging System
(Bio-Rad, Hercules, CA, USA).

Statistical analysis. Statistical analysis of the data was
performed using ANOVA and Duncan's test. Differences with
a p-value of <0.05 were considered statistically significant.

Results

Sulforaphane induced cell death of human osteosarcoma cells.
The MTT conversion assay was performed to determine the
cytotoxic effects of sulforaphane on the human osteosarcoma
cells, U2-OS and MG63. As shown in Fig. 1, sulforaphane
treatment induced the cell death of U2-OS and MG63 cells in
a concentration- and time-dependent manner. Treatment of
U2-OS and MG63 cells with 20 µM sulforaphane for 48 h
resulted in a 54.56±0.04% (p<0.05) and 77.36±0.74% (p<0.01)
inhibition of cell viability, respectively.

Sulforaphane induced G2/M arrest in U2-OS cells. Based on
the cytotoxic response of osteosarcoma cells to sulforaphane,
the next experiments were focused on the U2-OS cells. The
effects of sulforaphane on cell cycle progression were analyzed
by flow cytometry. Consistent with the effect on cell viability,
20 µM sulforaphane treatment resulted in the accumulation of
U2-OS cells in the G2/M phase (from 14.01±1.85% to
29.68±2.55%, Fig. 2).

Sulforaphane modulated protein levels of significant
G2/M phase regulators. Perturbations in cell cycle regula-
tion have been demonstrated as one of the most common
characteristics of cancer therapies (18-20). These alterations
are generally associated with uncontrolled cell growth and
involve down-regulation of CDK and cyclin expression or
increased expression of CDKIs. Based on the data revealing
that sulforaphane induces G2/M arrest in U2-OS cells, the
effect of sulforaphane on cell cycle regulatory molecules,
including CDKs and cyclins, which play essential roles in
the G2/M transition phase, was assessed. The expression of
cyclins A and B1 decreased following sulforaphane treatment
in a concentration- and time-dependent manner (Fig. 3).
Sulforaphane treatment of U2-OS cells also decreased the
expression of CDKs 1 and 2 in a concentration- and
time-dependent manner (Fig. 3). The down-regulation of
cyclin and CDK protein levels observed following sulfora-
Since sulforaphane treatment revealed a marked decrease in the expression of CDKs and cyclins, p21 was investigated as enhanced levels of p21 have been shown to be associated with...
G2/M arrest (5,6). Western blot analysis revealed that sulforaphane treatment of U2-OS cells for 24 h markedly induced protein levels of p21 in a concentration- and time-dependent manner (Fig. 3).

Sulforaphane caused apoptotic death of U2-OS cells. The possibility that sulforaphane-induced apoptosis could have contributed to the potent effects associated with G2/M arrest was investigated. Treatment with sulforaphane resulted in an increase of annexin V+PI− cells, which is a typical presentation of apoptotic cells stained with annexin V (Fig. 4A). DNA extracted from U2-OS cells treated with sulforaphane for 48 h displayed a characteristic ladder pattern of discontinuous DNA fragments on agarose gel electrophoresis (Fig 4B).

To further confirm the apoptotic effects of sulforaphane, Western blot analysis was performed on extracts of U2-OS cells treated with sulforaphane. As shown in Fig. 5, treatment of
U2-OS cells with sulforaphane induced proteolytic cleavage of PARP (116 kDa), resulting in the accumulation of the 85-kDa cleavage product. Sulforaphane also increased the degradation of ICAD in a concentration- and time-dependent manner.

Discussion

Cell proliferation and differentiation are tightly regulated processes that must be precisely coordinated in order to maintain tissue homeostasis. Specifically, passage through the cell cycle is governed by a family of protein kinase complexes that are controlled, in part, by CDK and its essential activating partner, cyclin (20,21). Under normal conditions these complexes are activated at specific intervals, and through a series of events result in the progression of cells through various phases of the cell cycle, thereby ensuring normal cell growth. Any defect in this machinery may cause an alteration in cell cycle regulation that results in unwanted cell proliferation and ultimately culminates in the development of cancer (18,22). Thus, regulating cyclin and CDK activity has turned out to be the most productive strategy for the discovery and design of novel anticancer agents targeting the cell cycle.

Cyclins A and B1, along with CDK1 and 2, are the driving forces behind the G1/M phase of the cell cycle, whereas p21 induces G1 and G2/M phase cell cycle arrest (5,6). Unscheduled misregulation of cyclin B1 during the cell cycle leads to uncontrolled cell growth and aberrant cell function (23). In our experiments, sulforaphane induced G2/M arrest in a concentration-dependent manner in the U2-OS cell line. Cell cycle arrest at the G2/M phase is observed when there is a defect in DNA damage repair, spindle attachment with centromeres and polymerization of spindle microtubules (24). Significant decreases in cyclins A and B1 and CDKs 1 and 2 with a concomitant up-regulation of p21 were observed in the sulforaphane-treated U2-OS cells using Western blot analysis. These results suggest that cell cycle arrest at the G2/M phase is mediated by limitation of the supply of cyclins A and B1 and CDKs 1 and 2, which are essential factors regulating the passage into mitosis.

The effect of sulforaphane on cell cycle arrest prompted the next series of experiments wherein the extent of apoptosis in U2-OS cells treated with sulforaphane was determined. The results revealed that sulforaphane caused apoptotic cell death, as evidenced by an increase in annexin V/PI cells, oligonucleosomal DNA fragmentation and the degradation of PARP and ICAD. Since the induction of CDK1 has been reported in anticancer agent-induced apoptosis in human leukemia and prostate cancer cells (25,26), the sulforaphane-related increase in p21 may have been responsible, in part, for the observed apoptotic cell death of U2-OS cells. In addition, the degradation of PARP suggests that caspase activation could have played a significant role in the induction of apoptosis. However, more detailed studies are required to better understand the mechanism underlying sulforaphane-induced apoptotic death in U2-OS cells.

Osteosarcoma is the most common type of bone tumor that mainly develops in adolescents and young adults. Despite recent advances in chemotherapy and wide excision of tumors, a substantial number of patients still succumb to their disease as a result of local recurrence or distant metastasis (27). The search for promising agents that could reduce the incidence and burden of cancer has become increasingly essential in recent years. Naturally occurring dietary supplements and herbs have stimulated great interest due to their chemopreventive and chemotherapeutic properties as well as their relatively non-toxic effects, low cost and availability as oral formulation (7,14). In this regard, the study focused on the effects of sulforaphane on cell proliferation in a human osteosarcoma cell line with the objective of elucidating the signaling mechanism through which sulforaphane exerts its anticancer effects. The study demonstrates that sulforaphane markedly induces G1/M arrest and apoptosis through the induction of p21 expression and down-regulation of CDK/cyclin complexes. The data suggest the possible application of sulforaphane as a cancer preventive or therapeutic agent against osteosarcoma.

Acknowledgements

This study was supported by the Chonbuk National University Hospital Research Institute of Clinical Medicine and research funds from the Chonbuk National University in 2009.

References