Abstract. The repurposing of drugs is becoming increasingly attractive as it avoids the lengthy process and cost implications associated with bringing a novel drug to market. Itraconazole is a broad-spectrum anti-fungal agent. An emerging body of in vivo, in vitro and clinical evidence have confirmed that it also possesses antineoplastic activities and has a synergistic action when combined with other chemotherapeutic agents. It acts via several mechanisms to prevent tumour growth, including inhibition of the Hedgehog pathway, prevention of angiogenesis, decreased endothelial cell proliferation, cell cycle arrest and induction of auto-phagocytosis. These allow itraconazole, either alone or in combination with other cytotoxic agents, to increase drug efficacy and overcome drug resistance. This study reviews the reported literature on the use of itraconazole in a variety of malignancies and highlights the recent insights into the critical pathways acted upon to prevent tumour growth.

Contents
1. Background
2. Itraconazole and the Hedgehog pathway
3. Itraconazole and angiogenesis
4. Itraconazole and drug resistance
5. Clinical papers
6. Conclusion

1. Background

The repurposing of drugs is becoming increasingly attractive as it avoids the expense and time required to develop novel therapeutics (1-3). Itraconazole is a Food and Drug Administration-approved agent that has passed toxicity testing, has recognised anti-neoplastic properties and has already been assessed in cancer therapy (4,5).

The original function of itraconazole was as a broad-spectrum anti-fungal agent that inhibits lanosterol 14-c-demethylase (14LDM), an enzyme that produces ergosterol in fungi and cholesterol in mammals (4-8). It is used to treat fungal infections, including aspergillosis, candidiasis and histoplasmosis, and for prophylaxis in immunosuppressive disorders (9,10). Itraconazole is a relatively safe drug, with rare side effects, including neutropenia, liver failure and heart failure (9).

An emerging body of in vivo, in vitro and clinical evidence has confirmed that itraconazole possesses antineoplastic activity and has a synergistic action when combined with other chemotherapeutic agents (4-33). It acts via several underlying mechanisms to prevent tumour growth (Fig. 1), including inhibition of the Hedgehog pathway, prevention of angiogenesis, decreased endothelial cell proliferation, cell cycle arrest, reversal of drug resistance and induction of auto-phagocytosis (9-11). Itraconazole's ability to prevent angiogenesis appears to be associated with its anti-fungal properties, yet all other mechanisms are not associated with the inhibition of 14LDM (4-8,12).

This paper reviews the currently available literature regarding the use of itraconazole in a variety of malignancies. A literature search was performed using PubMed with the keywords ‘Itraconazole and Cancer’ from January 1987 to October 2016. Those articles with titles relevant to our review topic were assessed for eligibility; abstracts that either described the clinical use of itraconazole as a cancer treatment in patients or illustrated evidence of itraconazole's antineoplastic activity from in vivo or in vitro studies were included. These selected articles were obtained and analysed in full, with 31 included in our review. Fig. 2 demonstrates the articles initially identified and those included for the review of the literature.

2. Itraconazole and the Hedgehog pathway

The Hedgehog pathway controls necessary developmental and embryogenic processes that are involved in tissue patterning and morphogenesis (4,11,13). While essentially quiescent in adult tissues, the Hedgehog pathway is involved in the maintenance of certain epithelial progenitor cell
populations and is activated during tissue regeneration and wound healing (4,13). In the absence of Sonic Hedgehog ligand (Shh), patched 1 (PTCH1) represses the activity of smoothened (SMO), and the pathway is turned off. Binding of Shh ligand to PTCH1 relieves its suppression of SMO, resulting in protein stabilisation and nuclear translocation of the GLI1 transcription factors (34-36). The GLI proteins, of which there are three (GLI1-3), activate a plethora of downstream targets that effect cell growth, survival and differentiation (37). In the majority of situations, expression of GLI1 mRNA is used as a surrogate marker for Hedgehog pathway activity (4). Fig. 3 depicts the Hedgehog signalling pathway, when activated and suppressed.

Abnormalities in Hedgehog signalling can result in congenital malformations, and inappropriate activation of the pathway may lead to the development of cancer (4,11). In addition to the overexpression of Shh, Hedgehog pathway activation may follow loss-of-function of PTCH1, gain-of-function mutations in SMO and epigenetic modulation of key pathway components, such as suppressor of fused, which is a negative regulator of the Hedgehog pathway (11).

Thus far, drugs designed to treat Hedgehog-driven malignancies have been developed to target SMO, although other compounds have been identified to inhibit or modulate the activity of the GLI proteins (38). Drugs demonstrated to block the Hedgehog pathway include vismodegib (GDC-0449), sonidegib (LDE-225) and cyclopamine (39). These drugs are known to act by binding to and antagonising the function of SMO (4,11,14). Itraconazole similarly inhibits the Hedgehog pathway by acting directly on SMO but, unlike other drugs, it binds to a different site on the SMO protein (4,11). This is the likely explanation for its synergistic activity with other anti-neoplastic agents, such as vismodegib. Itraconazole can therefore be used in combination with or, in cases of drug resistance, as an alternative to other Hedgehog pathway inhibitors (4). When other signalling pathways facilitate neoplastic growth, tumours may survive even in the presence of Hedgehog pathway inhibition, and therefore, a combination of drugs acting on multiple pathways may be required (14).

Evidence from pre-clinical studies has confirmed the capacity of itraconazole to inhibit the Hedgehog pathway (4,12,13,15,16). Treatment of allografted medulloblastos in a murine model resulted in a reduction in GLI1 mRNA and growth suppression (4). When combined with cyclopamine the effect was greater than with itraconazole treatment alone (4,11). Shh and GLI1 expression was revealed in low grade, stage 1A human endometrial cancer tissue samples (15). In vitro cell proliferation was then significantly inhibited by itraconazole, even when cells were treated with an oral anti-fungal dose (15). In cultured plural mesothelioma cells, activated Hedgehog signalling was inhibited with itraconazole and arsenic trioxide, an anti-leukaemia drug, which is known to target the GLI1 protein (13). The two drugs reduced the expression of GLI1, decreased cell viability, perturbed cell cycle progression and induced apoptosis (13,16). The Hedgehog pathway is aberrantly activated in basal cell carcinoma (BCC), due primarily to the presence of a mutated or inherited defective PTCH1 gene (6). Itraconazole administration reduced the growth of BCC in mouse models, decreased the expression of GLI1 mRNA and induced tumour necrosis (4).

3. Itraconazole and angiogenesis

The growth of solid tumours is angiogenesis-dependent (8). Anti-angiogenic agents are used in cancer therapy, and itraconazole has been shown to act on numerous pathways necessary for angiogenesis (8). It inhibits vascular endothelial growth factor (VEGF) signalling by preventing VEGF binding to the VEGF receptor 2, thereby reducing endothelial cell proliferation (5,17). Itraconazole can also prevent cell migration, chemotaxis and tube formation, all of which are essential for neovascularisation and angiogenesis (8).

The suppression of tumour growth with itraconazole treatment has been demonstrated in non-small cell lung cancer xenografts (8,18). In one such study, growth was reduced by 72 and 79% (P<0.001) in two primary xenograft models (8). Greater tumour growth suppression was observed with combination therapy involving itraconazole and cisplatin (8). As well as inhibiting cell proliferation in response to angiogenesis factors (VEGF and fibroblast growth factor), the migration and formation of tube networks were also prevented. These are necessary for capillary bed production; therefore, the area of tumour vascularity significantly decreased (8,18). In addition, itraconazole has been demonstrated to reduce pleural effusion volumes, the number of pleural tumour foci and VEGF-C levels in xenograft models with Lewis lung carcinoma (7).

4. Itraconazole and drug resistance

Drug resistance is a major obstacle in the desire to cure malignancies (33). Combination therapy is believed to reduce the development of drug resistance when compared with treatment with one drug alone (40,41). It is therefore possible that itraconazole can prevent the resistance associated with monotherapy when combined with other medications. Furthermore, all opportunities in reversing resistance should be explored, particularly with therapies that have minimal sequela, such as itraconazole. It has been revealed in vitro to reverse multi-drug resistance in numerous types of malignancies (9). In ovarian and breast cancer, drug resistance to chemotherapy is associated with permeability glycoprotein (also termed p-glycoprotein), multidrug resistance protein 1 and ATP-binding cassette sub-family B member 1 (14,18). This is an efflux pump present on cell membranes that reduces intracellular drug concentrations, conferring cellular resistance to genotoxic therapies (42). Ovarian clear cell carcinoma, one of the more aggressive disease subtypes, has been identified to have increased expression of these efflux pumps, thereby preventing the accumulation of cytotoxic agents within the malignant cells (43). In vitro studies confirm that itraconazole inhibits the efflux pump, thus reversing resistance (10,14,19,20). This has also been observed in resistant leukaemia and human embryonic kidney cells (21,22).
Figure 1. The anti-neoplastic activities of itraconazole. A diagram demonstrating the anti-neoplastic activities of itraconazole: Hedgehog pathway inhibition; angiogenesis inhibition; autophagy; multi-drug resistance reversal. VEGF, vascular endothelial growth factor; mTOR, mechanistic target of rapamycin; SMO, smoothened.

Flow Diagram of Literature Search

Articles identified from a PubMed search using keywords “Itraconazole and Cancer” in the timeframe 01.01.1987 - 31.10.2016.

N=816

Excluded as not relevant.
N=714 (87.5%)

Included and abstract assessed for eligibility.
N=102 (12.5%)

Excluded following review of abstract.
N=54 (6.6%)

Included and full text articles analysed.
N=48 (5.9%)

Excluded following review of full text.
N=17 (2.1%)

Article included in review.
N=31 (3.8%)

Figure 2. Flow diagram of the literature search. Articles identified, analysed and included in literature review.
5. Clinical papers

The use of itraconazole as a therapy has received extensive attention, primarily in phase I/II studies. Details of recent clinical studies are presented in Table I.

Ovarian cancer. At presentation, ovarian cancer is at an advanced stage in 70-75% of patients, and has a 5-year survival rate of ~40% (44,45). Although the initial response rates to first line chemotherapy are high, resistance is common, as reflected by poor survival (46). Itraconazole has been utilised in refractory disease to try and reverse such chemoresistance (47,48). In a retrospective review, 55 patients were treated either with chemotherapy alone (regimes of pegylated liposomal doxorubicin, gemcitabine, docetaxel, irinotecan or paclitaxel) or chemotherapy (docetaxel based in 79%) combined with itraconazole. The combination therapy was given biweekly to 19 female patients, with 400-600 mg itraconazole administered daily for 4 or 5 days. The median progression-free survival time was significantly longer for those receiving itraconazole (103 days, compared with 53 days in those who did not receive itraconazole; P=0.014), as was the overall survival time (642 days, compared with 139 days in those who did not receive itraconazole; P=0.0006). The overall response rate following treatment was 18%, with a greater proportion of the itraconazole group exhibiting a response (32% in the itraconazole group, 11% in the control group). The continued use of itraconazole is the likely explanation for the improved survival rates (23).

In another study (19), 9 patients with recurrent clear cell ovarian cancer had itraconazole added to their treatment regime with the objective of improving chemotherapeutic efficacy. Itraconazole 400 mg daily was administered over 4 days every 2 weeks. A response rate of 44% was achieved, with a higher median overall survival time (1,047 days) compared with that previously reported in other studies, which ranged between 7 and 10 months (47,48).

As chemotherapy is typically discontinued following resistance, few patients with refractory disease are eligible for such studies, and small numbers of female patients included (49). Another limitation is that cytotoxic regimens differ between patients, doses are frequently altered and patients are not randomised.

Prostate cancer. In advanced prostate cancer, although androgen deprivation therapy can be successful, inevitably resistance will develop (50). When this occurs, therapeutic options are limited. A subsequent randomised phase II trial...
<table>
<thead>
<tr>
<th>First Author</th>
<th>Study type</th>
<th>Cancer type</th>
<th>No. of patients</th>
<th>Itraconazole dose and treatment schedule</th>
<th>Response rates</th>
<th>Progression-free survival</th>
<th>Overall survival</th>
<th>Reported pathway outcomes</th>
<th>Adverse outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim</td>
<td>Phase II</td>
<td>Basal cell carcinoma</td>
<td>29: 19 treated, 10 controls</td>
<td>High-dose: 200 mg twice daily for 4 weeks (n=15) Low-dose: 100 mg twice daily for average of 2.3 months (n=4)</td>
<td>Cell proliferation reduced by 45% (P=0.04), GLI1 mRNA reduced by 65% (P=0.028) in high-dose. Tumour area reduced by 24% (95% CI, 18.2-30.0%) with both doses.</td>
<td>-</td>
<td>-</td>
<td>Hedgehog pathway inhibition</td>
<td>Fatigue (grade 2), heart failure (grade 4)</td>
</tr>
<tr>
<td>Lockhart</td>
<td>Case report</td>
<td>Stage III un-resectable pancreatic adenocarcinoma</td>
<td>1</td>
<td>200 mg daily for 9 months</td>
<td>Tumour size reduced and resected</td>
<td>No recurrence of disease following surgery.</td>
<td>-</td>
<td>Hedgehog pathway inhibition</td>
<td></td>
</tr>
<tr>
<td>Rudin</td>
<td>Phase II</td>
<td>Metastatic non-squamous non-small cell lung cancer</td>
<td>23</td>
<td>200 mg daily for 21 days combined with IV pemetrexed (n=15) single agent IV pemetrexed on day 1 (n=8)</td>
<td>Disease stabilisation at 3 months: 67% with itraconazole, 29% without. P=0.11</td>
<td>5.5 months with itraconazole, 2.8 months without. P=0.089</td>
<td>32 months with itraconazole, 8 months without. P=0.012</td>
<td>-</td>
<td>Nil</td>
</tr>
<tr>
<td>Tsubamoto</td>
<td>Retrospective analysis</td>
<td>Recurrent clear cell ovarian carcinoma</td>
<td>9</td>
<td>400 mg daily on days -2 to +2 with docetaxel and carboplatin-based chemotherapy on day 1. Regime repeated every 2 weeks.</td>
<td>Response rate of 44% (95%, CI 12-77%).</td>
<td>544 (median; 95% CI, 82-544) days.</td>
<td>1,047 (median; 95% CI, 462-1,332) days.</td>
<td>-</td>
<td>Deranged liver function (grade 1), anorexia (grade 2).</td>
</tr>
</tbody>
</table>
Table I. Continued.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Study type</th>
<th>Cancer type</th>
<th>No. of patients</th>
<th>Itraconazole dose and treatment schedule</th>
<th>Response rates</th>
<th>Progression-free survival</th>
<th>Overall survival</th>
<th>Reported pathway</th>
<th>Adverse outcomes</th>
<th>(Refs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsubamoto</td>
<td>Retrospective analysis</td>
<td>Resistant ovarian cancer</td>
<td>55 (19 treated, 36 controls)</td>
<td>Treated group: 400-600 mg daily on days -2 to +2 alongside 2nd line chemotherapy (n=19). Controls: chemotherapy only (n=36).</td>
<td>Overall response rate of 18% (95% CI, 8.28%). 32% in treated group, 11% in control group.</td>
<td>103 days (median in treated group, 53 days in controls. P=0.014.</td>
<td>642 (median for treated; 95% CI 238-1, 166) days, 139 (median in controls; 95% CI, 89-183) days.</td>
<td>-</td>
<td>-</td>
<td>(23)</td>
</tr>
<tr>
<td>Antonarakis</td>
<td>Phase II</td>
<td>Chemotherapy naïve, metastatic castration-resistant prostate cancer</td>
<td>46 (17 in low-dose group, 29 in high-dose group)</td>
<td>Low-dose: 200 mg/day. High-dose: 600 mg/day, until disease progression or toxicity.</td>
<td>Serum PSA response in low-dose: 0% (0-19.5%). In high-dose: 14.3% (4-32.7%). Disease progression in 15 (low-dose) and 22 (high-dose).</td>
<td>Low-dose: 11.9 weeks (median), 18.8% at 24 weeks. High-dose: 35.9 weeks, 61.6%.</td>
<td>Hedgehog pathway inhibition</td>
<td>Grade 3 toxicities: Fatigue, anorexia, rash, hyper-tension and hypo-kalaemia.</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>Suzman</td>
<td>Case report</td>
<td>Biochemically recurrent non-metastatic prostate cancer</td>
<td>1</td>
<td>300 mg twice daily for 5 months.</td>
<td>PSA fell by >50% after 3 months, testosterone levels unchanged, DHEA increased.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Increased ACTH, hypoaldosteronism, hyperbili-rubinaemia.</td>
<td>(25)</td>
</tr>
<tr>
<td>Ademuyiwa</td>
<td>Pilot trial</td>
<td>Metastatic breast cancer</td>
<td>13</td>
<td>200 mg daily for 28 day cycles (median 2 cycles)</td>
<td>Partial response in 1, stable disease in 3, progressive disease in 9</td>
<td>1.8 months</td>
<td>19.3 months</td>
<td>Angio-genesis inhibition</td>
<td>Increased ACTH, hypoaldosteronism, hyperbili-rubinaemia.</td>
<td>(26)</td>
</tr>
<tr>
<td>First Author</td>
<td>Study type</td>
<td>Cancer type</td>
<td>No. of patients</td>
<td>Itraconazole dose and treatment schedule</td>
<td>Response rates</td>
<td>Progression-free survival</td>
<td>Overall survival</td>
<td>Reported pathway</td>
<td>Adverse outcomes (Refs.)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Tsubamoto</td>
<td>Retrospective analysis</td>
<td>Recurrent triple-negative breast cancer</td>
<td>13</td>
<td>400 mg daily on days -2 to +2, given with chemotherapy on day 1. Regime repeated every 2 weeks. 5 patients also received bevacizumab.</td>
<td>62% (95% CI, 33-88%): Complete response in 23%, partial in 38%. Progressive disease in 15%.</td>
<td>10.8 months (median; 95% CI 7.6-15.3 months)</td>
<td>20.4 months (median; 95% CI 13.1-41.4 months)</td>
<td>-</td>
<td>Fatigue, insomnia, nausea, vomiting, dyspnoea, haemorrhage, pain (grade 3-4) (27)</td>
<td></td>
</tr>
<tr>
<td>Ally</td>
<td>Phase II</td>
<td>Metastatic basal cell carcinoma</td>
<td>5</td>
<td>400 mg daily on days 6-28, intravenous arsenic trioxide on days 1-5.</td>
<td>GLI1 mRNA reduced by 75% (P<0.001). Stable disease in 3 patients.</td>
<td>-</td>
<td>4 survived with disease and 1 died after mean follow-up of 12 months</td>
<td>Hedgehog pathway inhibition</td>
<td>Fatigue (grade 2), heart failure (grade 4) (29)</td>
<td></td>
</tr>
<tr>
<td>Tsubamoto</td>
<td>Retrospective analysis</td>
<td>Metastatic pancreatic cancer</td>
<td>38</td>
<td>400 mg daily on days -2 to +2 in combination with chemotherapy (docetaxel, gemcitabine and carboplatin) every 2 weeks for 3-11 cycles.</td>
<td>37%, complete response in 1 and partial response in 13 patients.</td>
<td>-</td>
<td>11.4 months (median)</td>
<td>Hedgehog pathway, angiogenesis and P-glycoprotein inhibition</td>
<td>- (30)</td>
<td></td>
</tr>
<tr>
<td>Tsubamoto</td>
<td>Retrospective analysis</td>
<td>Metastatic biliary tract cancer</td>
<td>28</td>
<td>400 mg daily on days -2 to +2, every 2 weeks for 2-17 cycles. 26 received docetaxel, gemcitabine and carboplatin. 2 received docetaxel and irinotecan.</td>
<td>57%, complete response in 2 and partial response in 14.</td>
<td>-</td>
<td>12 months (median)</td>
<td>Hedgehog pathway and P-glycoprotein inhibition</td>
<td>Trans-aminitis, leukopenia, infection, atrial flutter (31)</td>
<td></td>
</tr>
</tbody>
</table>
explored the use of either 200 or 600 mg itraconazole daily for the treatment of metastatic castration-resistant prostate cancer in 46 patients (24). The higher dose increased progression-free survival times and prostate-specific antigen (PSA) progression-free survival rates. In addition, skin biopsies exhibited a down-modulation of GLI1 (reflecting inhibition of the Hedgehog pathway) in the two treatment arms, which was associated with a significantly longer median PSA progression-free survival time (24).

A further case report describes the use of high dose itraconazole (300 mg twice daily) to treat a biochemical recurrence following radical prostatectomy in non-metastatic disease (25). After the patient declined castration treatment, itraconazole was administered and the PSA level reduced by >50% in 3 months. Although the PSA continued to decline during an additional 2 months of treatment, levels began to rise upon termination of the therapy (25). As such, itraconazole may be an alternative therapy for those wishing to avoid castrating or cytotoxic therapy, although additional trials are required to confirm this (24,25).

Breast cancer. A pilot trial evaluated the pharmacokinetics of itraconazole when administered to 13 patients with metastatic breast cancer (26). As the plasma levels of itraconazole increased, higher levels of thrombospondin-1, which inhibits angiogenesis, were detected. In addition, the levels of other angiogenic factors, basic fibroblast growth factor and placenta-derived growth factor decreased, albeit lacking a direct association between the fall in angiogenic factors and itraconazole levels.

In another study, 13 patients with progressive triple-negative breast cancer, despite extensive chemotherapy, were administered itraconazole (27). Patients commenced itraconazole treatment (400 mg daily for 4 days, repeated every 2 weeks) alongside cytotoxic agents, with 5 patients also receiving bevacizumab. Response rates were high (62%), with 23% complete responses. Overall survival rates were advantageous compared with previous findings of itraconazole use. Earlier studies of triple-negative disease failed to demonstrate such improvements: A phase III trial using bevacizumab and a retrospective analysis of platinum-based chemotherapy did not reveal overall survival benefits, while a meta-analysis identified only short-term improvements with platinum-based chemotherapy in non-metastatic disease (51-53).

Lung cancer. Itraconazole has been analysed as a second line treatment in metastatic non-squamous non-small cell lung cancer (18). A phase II study on 23 patients randomised to either single agent pemetrexed or combined pemetrexed and itraconazole (200 mg daily for 21 day cycles) reported the anticipated response rates in the pemetrexed only arm, with improved outcomes in those exposed to itraconazole (18). The proportion with disease stabilisation at 3 months was higher, median progression-free survival increased and overall survival was greater compared to those treated with pemetrexed alone. Future trials will explore its use as a first line treatment alongside other agents.

BCC. BCC, the most common form of skin cancer, has been a focus for Hedgehog pathway inhibitors (6,28,29,54,55).

<table>
<thead>
<tr>
<th>Itraconazole dose and treatment schedule</th>
<th>No. of patients</th>
<th>Cancer type</th>
<th>Study type</th>
<th>Response rates</th>
<th>Progression-free survival</th>
<th>Reported outcome</th>
<th>Pathway reported</th>
<th>Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mg daily for 7 days</td>
<td>1</td>
<td>Mycosis</td>
<td>Case report</td>
<td>Complete response on 4 occasions</td>
<td>Increased disease remission with itraconazole in AML (P<0.06)</td>
<td>PSA, prostate-specific antigen, DHEA, dehydroepiandrosterone, ACTH</td>
<td>Cytochrome P-450 and P-glycoprotein</td>
<td>Grade 4 neutropenia, grade 4 thrombocytopenia</td>
</tr>
<tr>
<td>100 mg twice daily</td>
<td>65</td>
<td>Acute leukaemia</td>
<td>Double-blind placebo-controlled trial</td>
<td>Increased disease remission with itraconazole in AML</td>
<td>No difference in overall survival</td>
<td>PSA, prostate-specific antigen, DHEA, dehydroepiandrosterone, ACTH</td>
<td>Cytochrome P-450 and P-glycoprotein</td>
<td>Grade 3/4 neutropenia, grade 3/4 thrombocytopenia</td>
</tr>
</tbody>
</table>

Table I. Continued.
Studies using vismodegib, sonidegib and itraconazole to treat BCC have all demonstrated efficacious results; however, resistance is frequently problematic (6,28,29,55-58). One phase II trial compared high dose itraconazole (200 mg twice daily for 4 weeks) with a control group, demonstrating a reduction in cell proliferation (Ki-67) and Hedgehog pathway activity (GLI1 mRNA levels) with itraconazole (6). The tumour area decreased when treated with either the high dose or with a lower dose over a longer time period (100 mg twice daily for 1-4 months). The findings were not replicated in those with prior vismodegib exposure, questioning the value of itraconazole following resistance to this drug (6).

Another review also determined that clinical responses were limited following vismodegib resistance (29). A total of 5 patients with metastatic BCC were treated with combined itraconazole (400 mg daily on days 6-28) and intravenous arsenic trioxide (on days 1-5). Despite a 75% decrease in GLI1 mRNA levels, a reduction in tumour size was not evident. While vismodegib and sonidegib appear to provide higher response rates and greater Hedgehog pathway inhibition, it may be beneficial to use itraconazole following resistance or as a combined therapy. It remains unclear whether continuous high dose itraconazole administered over a longer period could give similar results to those observed with vismodegib and sonidegib (6,28,29).

Pancreatic cancer. In a previous study (30), 38 patients with progressive pancreatic cancer received itraconazole (400 mg daily for 4 days) in combination with chemotherapy (docetaxel, gemcitabine and carboplatin) over 2 week cycles. A response rate of 37% was achieved, with complete and partial responses in 1 and 13 patients, respectively. In total, 35 patients who either had stable disease or had a complete or partial response continued itraconazole treatment with irinotecan-based chemotherapy. The response rate increased to 47%, with a median overall survival time of 11.4 months. This was greater than the median overall survival time of 6 months found in an earlier analysis of clinical trials that investigated second-line treatment in advanced pancreatic disease (59). The advantageous results in this study are possibly due to the administration of triple chemotherapeutic agents.

A serendipitous case of pancreatic cancer treated by itraconazole has previously been reported (10). Histoplasmosis infection was detected in a patient with stage III locally advanced unresectable pancreatic adenocarcinoma. Palliative chemotherapy was paused, a 9-month course of itraconazole 200 mg daily commenced and, upon completion, the tumour was revealed to have decreased in size. It was deemed resectable and following surgery the patient remained disease free, with no evidence of recurrence. As chemotherapy had been withheld, the reduction was thought to have been caused by itraconazole and Hedgehog pathway inhibition.

Biliary tract cancer. Biliary tract cancer is a rare condition and has a poor prognosis (60). Favourable response rates and acceptable toxicity effects have been demonstrated in a study of patients with refractory metastatic biliary tract carcinoma treated with itraconazole (31). A total of 28 patients received itraconazole (400 mg daily for 4 days) in addition to chemotherapy regimens (docetaxel, gemcitabine and carboplatin in 26 patients, docetaxel and irinotecan in 2 patients). A complete response was observed in 2 patients, while 14 had a partial response. The overall response rate was 57% and the median overall survival time was 12 months. This compares to 7.2 months in a systematic review of second-line treatment for advanced biliary tract carcinoma (61). Despite the small number of patients in this study, itraconazole appears to be a promising therapeutic alternative after first-line treatment in recurrent disease.

Mycosis fungoides. Another study on successful itraconazole treatment is that of a patient with Mycosis fungoides (32), the most common type of cutaneous T-cell lymphoma. The patient developed erythematous plaques on four separate occasions, yet no cause was identified. Following no improvement with miconazole or topical steroids, itraconazole 200 mg daily was administered for 7 days. The lesions completely resolved and additional episodes again only responded following itraconazole treatment. Eventually biopsy and histology results supported a diagnosis of Mycosis fungoides. The mechanism of action in this condition is unclear.

Acute leukaemia. As previously stated, itraconazole is used for fungal infection prophylaxis in immunosuppressive conditions (9). In patients with acute leukaemia it is often administered for prophylactic purposes in those receiving chemotherapy (33,62). Resistance to the cytotoxic agent daunorubicin has been reversed by itraconazole (63). It has been demonstrated that the addition of itraconazole (100 mg twice daily) improves remission rates in acute myelogenous leukaemia and disease-free survival in acute lymphoblastic leukaemia (33). This supports itraconazole’s action of reversing drug resistance and is considered to be associated with its involvement with cytochrome P-450 and P-glycoprotein.

6. Conclusion

There is understandable reticence regarding the repurposing of drugs. Although the initial focus of these therapies is to treat non-malignant disease, the principle of cell destruction and elimination is the same as in agents created to target malignancy. To have a drug acting singularly on a recognised essential pathway in the malignant process is ideal, but, in reality, few drugs act in such a manner. Thus, the use of therapies with multiple targets would be reasonable to explore.

Treatments that cause fewer adverse effects, give greater survival benefits and are more cost-effective are greatly required (8). Itraconazole has been shown to be safe in humans and is cheap to purchase, thus making it a viable option for future studies (9,23). By avoiding the lengthy process and cost-implications associated with bringing a novel drug to market, further study into its actions and potential benefits make it an attractive prospect.

Evidence from in vivo, in vitro and clinical studies have demonstrated the antineoplastic effects of itraconazole and have revealed at a number of the critical pathways that it targets (4-33). These results allow itraconazole, alone or in combination with other chemotherapeutic agents, to increase drug efficacy and overcome drug resistance. Exploration in aggressive and refractory disease, including ovarian cancer,
with greater participant numbers and consistent treatment regimens is required. While trials are currently underway and additional studies are planned, studies need to use itraconazole in combination with other drugs affecting cell survival. They need to use itraconazole over longer time periods, at various stages of disease, in tumours associated with drug resistance and in other malignancies known to be affected by the Hedgehog pathway and angiogenesis (9,10).

Acknowledgements
This review was supported by Ovacome, The Ovarian Cancer Support Charity.

References
33. Vreugdenhil G, Raemaekers JM, van Dijke BJ and de Pauw BE: Itraconazole and multidrug resistance: Possible effects on remis-

