Open Access

Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform

  • Authors:
    • Yan Hao
    • Dawei Chen
    • Zhiguo Zhang
    • Ping Zhou
    • Yunxia Cao
    • Zhaolian Wei
    • Xiaofeng Xu
    • Beili Chen
    • Weiwei Zou
    • Mingrong Lv
    • Dongmei Ji
    • Xiaojin He
  • View Affiliations

  • Published online on: January 26, 2018     https://doi.org/10.3892/ol.2018.7876
  • Pages: 4296-4302
  • Copyright: © Hao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Hearing loss may place a heavy burden on the patient and patient's family. Given the high incidence of hearing loss among newborns and the huge cost of treatment and care (including cochlear implantation), prenatal diagnosis is strongly recommended. Termination of the fetus may be considered as an extreme outcome to the discovery of a potential deaf fetus, and therefore preimplantation genetic diagnosis has become an important option for avoiding the birth of affected children without facing the risk of abortion following prenatal diagnosis. In one case, a couple had a 7‑year‑old daughter affected by non‑syndromic sensorineural hearing loss. The affected fetus carried a causative compound heterozygous mutation c.919‑2 A>G (IVS7‑2 A>G) and c.1707+5 G>A (IVS15+5 G>A) of the solute carrier family 26 member 4 gene inherited from maternal and paternal sides, respectively. The present study applied multiple displacement amplification for whole genome amplification of biopsied trophectoderm cells and next‑generation sequencing (NGS)‑based single nucleotide polymorphism haplotyping on an Ion Torrent Personal Genome Machine. One unaffected embryo was transferred in a frozen‑thawed embryo transfer cycle and the patient was impregnated. To conclude, to the best of our knowledge, this may be the first report of NGS‑based preimplantation genetic diagnosis (PGD) for non‑syndromic hearing loss caused by a compound heterozygous mutation using an Ion Torrent Personal Genome Machine. NGS provides unprecedented high‑throughput, highly parallel and base‑pair resolution data for genetic analysis. The method meets the requirements of medium‑sized diagnostics laboratories. With decreased costs compared with previous techniques (such as Sanger sequencing), this technique may have potential widespread clinical application in PGD of other types of monogenic disease.

References

1 

White KR: Early hearing detection and intervention programs: Opportunities for genetic services. Am J Med Genet A. 130A:1–36. 2004. View Article : Google Scholar

2 

Liang Q and Mason B: Enter the dragon-China's journey to the hearing world. Cochlear Implants Int. 14 Suppl 1:S26–S31. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Smith RJ, Bale JF Jr and White KR: Sensorineural hearing loss in children. Lancet. 365:879–890. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Taneja MK: Preimplantation genetic diagnosis: Its role in prevention of deafness. Indian J Otolaryngol Head Neck Surg. 66:1–3. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Mahboubi H, Dwabe S, Fradkin M, Kimonis V and Djalilian HR: Genetics of hearing loss: Where are we standing now? Eur Arch Otorhinolaryngol. 269:1733–1745. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Liu RM, Liu HJ, Cong JL, Sun AL, Du JD and Sun CM: Genetic characteristics of the couple with non-syndromic sensorineural hearing loss and fertility guidance. Int J Clin Exp Med. 8:21746–21754. 2015.PubMed/NCBI

7 

Park MK, Sagong B, Lee JD, Bae SH, Lee B, Choi KS, Choo YS, Lee KY and Kim UK: A1555G homoplasmic mutation from A1555G heteroplasmic mother with Pendred syndrome. Int J Pediatr Otorhinolaryngol. 78:1996–1999. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Nadège C, Valérie G, Laura F, Hélène DB, Vanina B, Olivier D, Bernard F and Laurent M: The cost of cochlear implantation: A review of methodological considerations. Int J Otolaryngol. 2011:2108382011. View Article : Google Scholar : PubMed/NCBI

9 

Altarescu G, Eldar-Geva T, Brooks B, Zylber-Haran E, Varshaver I, Margalioth EJ, Levy-Lahad E and Renbaum P: Preimplantation genetic diagnosis (PGD) for nonsyndromic deafness by polar body and blastomere biopsy. J Assist Reprod Genet. 26:391–397. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Kuliev A, Rechitsky S, Tur-Kaspa I and Verlinsky Y: Preimplantation genetics: Improving access to stem cell therapy. Ann N Y Acad Sci. 1054:223–227. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Drüsedau M, Dreesen JC, Derks-Smeets I, Coonen E, van Golde R, van Echten-Arends J, Kastrop PM, Blok MJ, Gómez-García E, Geraedts JP, et al: PGD for hereditary breast and ovarian cancer: The route to universal tests for BRCA1 and BRCA2 mutation carriers. Eur J Hum Genet. 21:1361–1368. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Kou S: Preimplantation genetic diagnosis: An update on current technologies and ethical considerations. Reprod Med Biol. 15:69–75. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Qubbaj W, Al-Swaid A, Al-Hassan S, Awartani K, Deek H and Coskun S: First successful application of preimplantation genetic diagnosis and haplotyping for congenital hyperinsulinism. Reprod Biomed Online. 22:72–79. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Natesan SA, Bladon AJ, Coskun S, Qubbaj W, Prates R, Munne S, Coonen E, Dreesen JC, Stevens SJ, Paulussen AD, et al: Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med. 16:838–845. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Giménez C, Sarasa J, Arjona C, Vilamajó E, Martínez-Pasarell O, Wheeler K, Valls G, Garcia-Guixé E and Wells D: Karyomapping allows preimplantation genetic diagnosis of a de-novo deletion undetectable using conventional PGD technology. Reprod Biomed Online. 31:770–775. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA and Griffin DK: Karyomapping: A universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 47:651–658. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Thornhill AR, Handyside AH, Ottolini C, Natesan SA, Taylor J, Sage K, Harton G, Cliffe K, Affara N, Konstantinidis M, et al: Karyomapping - a comprehensive means of simultaneous monogenic and cytogenetic PGD: Comparison with standard approaches in real time for Marfan syndrom. J Assist Reprod Genet. 32:347–356. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Natesan SA, Handyside AH, Thornhill AR, Ottolini CS, Sage K, Summers MC, Konstantinidis M, Wells D and Griffin DK: Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 29:600–605. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Konstantinidis M, Prates R, Goodall NN, Fischer J, Tecson V, Lemma T, Chu B, Jordan A, Armenti E, Wells D and Munné S: Live births following Karyomapping of human blastocysts: Experience from clinical application of the method. Reprod Biomed Online. 31:394–403. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Ren Y, Zhi X, Zhu X, Huang J, Lian Y, Li R, Jin H, Zhang Y, Zhang W, Nie Y, et al: Clinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophy. J Genet Genomics. 43:541–547. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Lukaszuk K, Pukszta S, Ochman K, Cybulska C, Liss J, Pastuszek E, Zabielska J and Woclawek-Potocka I: Healthy baby born to a robertsonian translocation carrier following next-generation sequencing-based preimplantation genetic diagnosis: A case report. AJP Rep. 5:e172–e175. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Chen L, Diao Z, Xu Z, Zhou J, Wang W, Li J, Yan G and Sun H: The clinical application of preimplantation genetic diagnosis for the patient affected by congenital contractural arachnodactyly and spinal and bulbar muscular atrophy. J Assist Reprod Genet. 33:1459–1466. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Liss J, Chromik I, Szczyglińska J, Jagiełło M, Łukaszuk A and Łukaszuk K: Current methods for preimplantation genetic diagnosis. Ginekol Pol. 87:522–526. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Roy S, LaFramboise WA, Nikiforov YE, Nikiforova MN, Routbort MJ, Pfeifer J, Nagarajan R, Carter AB and Pantanowitz L: Next-generation sequencing informatics: Challenges and strategies for implementation in a clinical environment. Arch Pathol Lab Med. 140:958–975. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet. 24:133–141. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Tenedini E, Artuso L, Bernardis I, Artusi V, Percesepe A, De Rosa L, Contin R, Manfredini R, Pellacani G, Giannetti A, et al: Amplicon-based next-generation sequencing: An effective approach for the molecular diagnosis of epidermolysis bullosa. Br J Dermatol. 173:731–738. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Drakopoulos P, Blockeel C, Stoop D, Camus M, de Vos M, Tournaye H and Polyzos NP: Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos? Hum Reprod. 31:370–376. 2016.PubMed/NCBI

28 

Gardner DK, Lane M, Stevens J, Schlenker T and Schoolcraft WB: Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil Steril. 73:1155–1158. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Yin A, Liu C, Zhang Y, Wu J, Mai M, Ding H, Yang J and Zhang X: The carrier rate and mutation spectrum of genes associated with hearing loss in South China hearing female population of childbearing age. BMC Med Genet. 14:572013. View Article : Google Scholar : PubMed/NCBI

30 

Wang QJ, Zhao YL, Rao SQ, Guo YF, He Y, Lan L, Yang WY, Zheng QY, Ruben RJ, Han DY and Shen Y: Newborn hearing concurrent gene screening can improve care for hearing loss: A study on 14,913 Chinese newborns. Int J Pediatr Otorhinolaryngol. 75:535–542. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Morton NE: Genetic epidemiology of hearing impairment. Ann N Y Acad Sci. 630:16–31. 1991. View Article : Google Scholar : PubMed/NCBI

32 

Postelmans JT, Cleffken B and Stokroos RJ: Post-operative complications of cochlear implantation in adults and children: Five years' experience in Maastricht. J Laryngol Otol. 121:318–323. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Liss J, Mirecka A, Kitowska K and Lukaszuk K: Preimplantaion genetic diagnosis of hearing loss with 35delG mutation in GJB2 gene-preliminary report. Otolaryngol Pol. 65:443–446. 2011.(In Polish). View Article : Google Scholar : PubMed/NCBI

34 

Wu CC, Lin SY, Su YN, Fang MY, Chen SU and Hsu CJ: Preimplantation genetic diagnosis (embryo screening) for enlarged vestibular aqueduct due to SLC26A4 mutation. Audiol Neurootol. 15:311–317. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Xiong W, Wang D, Gao Y, Gao Y, Wang H, Guan J, Lan L, Yan J, Zong L, Yuan Y, et al: Reproductive management through integration of PGD and MPS-based noninvasive prenatal screening/diagnosis for a family with GJB2-associated hearing impairment. Sci China Life Sci. 58:829–838. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Treff NR, Fedick A, Tao X, Devkota B, Taylor D and Scott RT Jr: Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 99:1377–1384.e6. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Idan N, Brownstein Z, Shivatzki S and Avraham KB: Advances in genetic diagnostics for hereditary hearing loss. J Basic Clin Physiol Pharmacol. 24:165–170. 2013.PubMed/NCBI

38 

Watson CT, Marques-Bonet T, Sharp AJ and Mefford HC: The genetics of microdeletion and microduplication syndromes: An update. Annu Rev Genomics Hum Genet. 15:215–244. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Russo CD, Di Giacomo G, Cignini P, Padula F, Mangiafico L, Mesoraca A, D'Emidio L, McCluskey MR, Paganelli A and Giorlandino C: Comparative study of aCGH and Next Generation Sequencing (NGS) for chromosomal microdeletion and microduplication screening. J Prenat Med. 8:57–69. 2014.PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hao, Y., Chen, D., Zhang, Z., Zhou, P., Cao, Y., Wei, Z. ... He, X. (2018). Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform. Oncology Letters, 15, 4296-4302. https://doi.org/10.3892/ol.2018.7876
MLA
Hao, Y., Chen, D., Zhang, Z., Zhou, P., Cao, Y., Wei, Z., Xu, X., Chen, B., Zou, W., Lv, M., Ji, D., He, X."Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform". Oncology Letters 15.4 (2018): 4296-4302.
Chicago
Hao, Y., Chen, D., Zhang, Z., Zhou, P., Cao, Y., Wei, Z., Xu, X., Chen, B., Zou, W., Lv, M., Ji, D., He, X."Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform". Oncology Letters 15, no. 4 (2018): 4296-4302. https://doi.org/10.3892/ol.2018.7876