Open Access

Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm

  • Authors:
    • Liang Wei
    • Qi Wang
    • Yanfei Zhang
    • Cheng Yang
    • Hongxin Guan
    • Jianxin Jiang
    • Zhiyang Sun
  • View Affiliations

  • Published online on: February 2, 2018     https://doi.org/10.3892/ol.2018.7935
  • Pages: 4951-4957
  • Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Intracranial aneurysm (IA) is a localized dilation of the blood vessel. The present study was designed to explore the mechanisms of rupture of IA. GSE13353 (including 11 ruptured and 8 unruptured IA samples) and GSE15629 (including 8 ruptured and 6 unruptured IA samples) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) identified using limma and MetaDE packages were merged, and a protein‑protein interaction (PPI) network analysis was performed using Cytoscape software. Pathway enrichment analysis was performed for the nodes of the PPI network using the fisher algorithm. The 100 most prominent genes in the network were designated candidate genes and a hierarchical clustering analysis was performed. The tune.svm function of e1071 package was used to construct a support vector machine (SVM) classifier, and the Candidate Cancer Gene Database was applied to analyze the characterization of gene‑associated cancer. Furthermore, the genes involved in the SVM classifier were assessed via principal component analysis (PCA). In the ruptured samples, 1,292 DEGs and 1,029 DEGs separately were identified by limma and MetaDE packages. The 100 most prominent genes in the network included fibronectin 1 (FN1), amyloid β (A4) precursor protein (APP), nuclear RNA export factor 1 (NXF1) and signal transducer and activator of transcription 3 (STAT3). Pathway enrichment analysis identified that toll‑like receptor 3 (TLR3) was enriched in the Toll‑like receptor signaling pathway. A total of 15 genes (including FN1) were used to construct the SVM classifier. NXF1 was identified to be associated with Nervous System Cancer. PCA revealed that APP, NXF1 and STAT3 were the 3 principal components. TLR3, FN1, APP, NXF1 and STAT3 may affect the rupture of IA.

References

1 

Brisman JL, Song JK and Newell DW: Cerebral aneurysms. N Eng J Med. 355:928–939. 2006. View Article : Google Scholar

2 

Bhidayasiri R, Waters MF and Giza C: Neurological differential diagnosis: A prioritized approach. John Wiley & Sons; pp. 5602005

3 

Goljan EF: Rapid Review Pathology. 3rd. Mosby Inc.; Maryland Heights, MO: 2011, View Article : Google Scholar

4 

Flemming KD: Stroke essentials for primary care: A practical guide. Mayo Clin Proc. 85:pp. e762010; View Article : Google Scholar

5 

Haberland C: Clinical Neuropathology. Text and Color Atlas (1). Demos Medical. 2006.

6 

Guo F, Li Z, Song L, Han T, Feng Q, Guo Y, Xu J, He M and You C: Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm. J Clin Neurosci. 14:550–555. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, Ishibashi R, Nozaki K, Morishita R and Hashimoto N: NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation. 116:2830–2840. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Jayaraman T, Berenstein V, Li X, Mayer J, Silane M, Shin YS, Niimi Y, Kiliç T, Gunel M and Berenstein A: Tumor necrosis factor α is a key modulator of inflammation in cerebral aneurysms. Neurosurgery. 57:558–564. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Fontanella M, Rainero I, Gallone S, Rubino E, Fenoglio P, Valfrè W, Garbossa D, Carlino C, Ducati A and Pinessi L: Tumor necrosis factor-alpha gene and cerebral aneurysms. Neurosurgery. 60:668–673. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Aoki T, Kataoka H, Moriwaki T, Nozaki K and Hashimoto N: Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke. 38:2337–2345. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K and Hashimoto N: Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke. 40:942–951. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Kurki MI, Häkkinen SK, Frösen J, Tulamo R, von und zu Fraunberg M, Wong G, Tromp G, Niemelä M, Hernesniemi J, Jääskeläinen JE and Ylä-Herttuala S: Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: An emerging regulative role of toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors. Neurosurgery. 68:1667–1676. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Pera J, Korostynski M, Krzyszkowski T, Czopek J, Slowik A, Dziedzic T, Piechota M, Stachura K, Moskala M, Przewlocki R and Szczudlik A: Gene expression profiles in human ruptured and unruptured intracranial aneurysms: What is the role of inflammation? Stroke. 41:224–231. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J and Jääskeläinen J: Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: Histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 35:2287–2293. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J and Jääskeläinen J: Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: Implications for biological therapy preventing rupture. Neurosurgery. 58:534–541. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Tulamo R, Frösen J, Junnikkala S, Paetau A, Pitkäniemi J, Kangasniemi M, Niemelä M, Jääskeläinen J, Jokitalo E, Karatas A, et al: Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery. 59:1069–1077. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Laaksamo E, Tulamo R, Baumann M, Dashti R, Hernesniemi J, Juvela S, Niemelä M and Laakso A: Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms. Stroke. 39:886–892. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Rao Y, Lee Y, Jarjoura D, Ruppert AS, Liu CG, Hsu JC and Hagan JP: A comparison of normalization techniques for microRNA microarray data. Stat Appl Genet Mol Biol. 7:Article 222008. View Article : Google Scholar

19 

Smyth GK: Limma: Linear models for microarray data = Bioinformatics and computational biology solutions using R and Bioconductor. Springer; New York, NY: pp. 397–420. 2005

20 

Chang LC, Lin HM, Sibille E and Tseng GC: Meta-analysis methods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline. BMC Bioinformatics. 14:3682013. View Article : Google Scholar : PubMed/NCBI

21 

Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A and Tyers M: BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 34(Database Issue): D535–D539. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al: Human protein reference database-2009 update. Nucleic Acids Res. 37(Database Issue): D767–D772. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM and Eisenberg D: DIP: The database of interacting proteins. Nucleic Acids Res. 28:289–291. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Köhn HF and Hubert LJ: Hierarchical cluster analysis. Wiley StatsRef: Statistics Reference Online; 2015

26 

Wilkinson L and Friendly M: The history of the cluster heat map. Am Stat. 63:179–184. 2012. View Article : Google Scholar

27 

Damar İH, Altunkaş F, Çelik A, Koç F, Karayakalı M, Karaman K, Arısoy A and Ceyhan K: Fragmented QRS frequency in patients with cardiac syndrome X. Anatol J Cardiol. 16:616–620. 2016.PubMed/NCBI

28 

Ma S, Lv M, Deng F, Zhang X, Zhai H and Lv W: Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine. J Hazard Mater. 283:591–598. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Dimitriadou E, Hornik K, Leisch F, Meyer D and Weingessel A: Misc functions of the Department of Statistics (e1071), TU Wien. R package. 1:5–24. 2008.

30 

Abbott KL, Nyre ET, Abrahante J, Ho YY, Vogel RI and Starr TK: The candidate cancer gene database: A database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43(Database Issue): D844–D848. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Abdi H and Williams LJ: Principal component analysis. Wiley Interdisciplinary Reviews: Comput Stat. 2:433–459. 2010. View Article : Google Scholar

32 

Huggins C, Pearce S, Peri F, Neumann F, Cockerill G and Pirianov G: A novel small molecule TLR4 antagonist (IAXO-102) negatively regulates non-hematopoietic toll like receptor 4 signalling and inhibits aortic aneurysms development. Atherosclerosis. 242:563–570. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Aoki T, Nishimura M, Ishibashi R, Kataoka H, Takagi Y and Hashimoto N: Toll-like receptor 4 expression during cerebral aneurysm formation. Laboratory investigation. J Neurosurg. 113:851–858. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Paloschi V, Kurtovic S, Folkersen L, Gomez D, Wågsäter D, Roy J, Petrini J, Eriksson MJ, Caidahl K, Hamsten A, et al: Impaired splicing of fibronectin is associated with thoracic aortic aneurysm formation in patients with bicuspid aortic valve. Arterioscler Thromb Vasc Biol. 31:691–697. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Wang X and Astrof S: Neural crest cell-autonomous roles of fibronectin in cardiovascular development. Development. 143:88–100. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Astrof S and Hynes RO: Fibronectins in vascular morphogenesis. Angiogenesis. 12:165–175. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Neri D and Bicknell R: Tumour vascular targeting. Nat Rev Cancer. 5:436–446. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Pedretti M, Rancic ZA, Herzog BA, Soltermann A, Herzog BA, Schliemann C, Lachat M, Neri D and Kaufmann PA: Comparative immunohistochemical staining of atherosclerotic plaques using F16, F8 and L19: Three clinical-grade fully human antibodies. Atherosclerosis. 208:382–389. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Pedretti M, Soltermann A, Arni S, Weder W, Neri D and Hillinger S: Comparative immunohistochemistry of L19 and F16 in non-small cell lung cancer and mesothelioma: Two human antibodies investigated in clinical trials in patients with cancer. Lung Cancer. 64:28–33. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerrière A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, et al: APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet. 38:24–26. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P and Izaurralde E: TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol. 20:8996–9008. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Chandesris MO, Azarine A, Ong KT, Taleb S, Boutouyrie P, Mousseaux E, Romain M, Bozec E, Laurent S, Boddaert N, et al: Frequent and widespread vascular abnormalities in human signal transducer and activator of transcription 3 deficiency. Circ Cardiovasc Genet. 5:25–34. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Romain M, Taleb S, Dalloz M, Ponnuswamy P, Esposito B, Pérez N, Wang Y, Yoshimura A, Tedgui A and Mallat Z: Overexpression of SOCS3 in T lymphocytes leads to impaired interleukin-17 production and severe aortic aneurysm formation in mice-brief report. Arterioscler Thromb Vasc Biol. 33:581–584. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Liao M, Xu J, Clair AJ, Ehrman B, Graham LM and Eagleton MJ: Local and systemic alterations in signal transducers and activators of transcription (STAT) associated with human abdominal aortic aneurysms. J Surg Res. 176:321–328. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Qin Z, Bagley J, Sukhova G, Baur WE, Park HJ, Beasley D, Libby P, Zhang Y and Galper JB: Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3. J Mol Cell Cardiol. 87:160–170. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Eagleton MJ, Xu J, Liao M, Parine B, Chisolm GM and Graham LM: Loss of STAT1 is associated with increased aortic rupture in an experimental model of aortic dissection and aneurysm formation. J Vasc Surg. 51:951–961. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wei, L., Wang, Q., Zhang, Y., Yang, C., Guan, H., Jiang, J., & Sun, Z. (2018). Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm. Oncology Letters, 15, 4951-4957. https://doi.org/10.3892/ol.2018.7935
MLA
Wei, L., Wang, Q., Zhang, Y., Yang, C., Guan, H., Jiang, J., Sun, Z."Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm". Oncology Letters 15.4 (2018): 4951-4957.
Chicago
Wei, L., Wang, Q., Zhang, Y., Yang, C., Guan, H., Jiang, J., Sun, Z."Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm". Oncology Letters 15, no. 4 (2018): 4951-4957. https://doi.org/10.3892/ol.2018.7935